論文

低拘束圧三軸圧縮試験機の開発による へどろの特性評価

今	泉	繁	良*
北	蟗	芳	人 **
枡	野	保	博 ***
岩	熊	真	****
鈴	木	敦	巳*****

Development of Low Confined Pressures Triaxial Compression Test Device and Soil Characteristics of Hedoro

> Shigeyoshi IMAIZUMI Yoshito KITAZONO Yasuhiro MASUNO Shinichi IWAKUMA Atsumi SUZUKI

1.まえがき

有害物質を含むへどろを覆土処分し、跡地利用を考 えるとき、覆土後の圧密沈下がどのように進行し、どの 程度の支持力が期待しうるかを評価することは重要な 問題である。しかしながら、へどろは間隙比が大きく単 位体積重量が小さいため、水中で施工されたような場 合の圧密圧力は1kgf/cm以下の低圧力となる。このよ うな非常に軟らかい状態にあるへどろの強度・変形特 性を評価するには特殊な実験装置と方法が必要であり、

*	助教授,	工博,	地域共同研究センタ-	-

- ** 助手,工修,土木工学教室
- *** 東亜建設工業(㈱(元熊本大学生)
- **** 技官, 土木工学教室
- ***** 教授, 工博, 土木工学教室

圧密に関しては定ひずみ速度圧密試験装置¹や浸透圧 を利用した方法²があり、へどろの圧密特性が徐々に明 らかにされつつある。

他方、三軸圧縮試験機に関しては十分な装置は見ら れず,液性限界以上の含水比状態にあるへどろを取り 扱い易い含水状態にまで脱水して予備圧密した後、供 試体として成形し、三軸圧縮試験を実施しているのが 通常である。しかしながら、この方法では、予備圧密の 圧力除荷と試料成形に伴う試料の乱れが予想され、こ のことが低拘束圧時の応力一ひずみ関係の評価にも影 響を与えることが懸念される。また、粘性土を種々の含 水比で練り返して圧密非排水三軸試験を実施した八木 らの実験³⁴では、予備圧密開始時の含水比の違いが圧 縮係数C_c、破壊時の軸ひずみ量ε₁、破壊時の間隙圧係数 A₁に影響を与えることが示されており、予備圧密に基 づく方法がへどろの土質特性の正確な評価法でありう るのか疑問である。

本研究では、液性限界以上の含水状態にあるへどろ をそのまま低圧で圧密・拘束して三軸圧縮試験を実施 することのできる装置の概要と、これを用いて含水比 が180%程度のへどろを圧密非排水試験した結果につ いて、主として従来の予備圧密に基づく方法と比較し ながら、水俣へどろの土質特性について報告する。

2. 低拘束圧三軸圧縮試験装置と試験方法

図-1は開発した低拘束圧三軸圧縮試験装置の概要 を示している。この装置は、へどろに軸圧縮力を加えた ときの微弱なせん断抵抗力を精度良く計測することが できるように、へどろ用コーン貫入試験機の荷重計測 機構⁵を取入れたもので、載荷荷重を検知するロードセ ルを上部載荷板とピストンロッド先端の間に設置する とともに、載荷板を上方に吊り上げる形式でピストン ロッドに固定させたものである。このような機構を用 いることによって、軟弱なへどろ供試体に上部載荷板 の重量が作用するのを防ぎ、また、ピストンとその軸受 との間の摩擦力が軸圧縮力の評価に与える影響を除去 することが可能となる。その結果、高含水状態での供試 体の自立と低圧力での圧密、低せん断応力レベルでの 応力一ひずみ関係の精度良い計測が可能となる。 ところで、荷重検出機構としてロードセルだけでな く締め付けねじとゴムリングを含めたものとしたため に、上部載荷板に作用する荷重とロードセルが出力す る値(マイクロひずみ)の間に線形関係が保たれている かどうかが心配される。図-2は、締め付けねじによる ロードセルへの初期荷重値P_iを 30.9 マイクロひずみ としたときの両者の関係を示したものである。両者の 関係を示す傾き(校正係数)は、ロードセルだけの場合 に比べてやや小さいものとなっているが、載荷時と除 荷時とも線形関係は保たれており、ループ特性は良好 である。

図-3は、三軸セル内にこの計測機構をセットし、供 試体を置かずにセル内の水圧を変化させたときの検出 値を示したものである。両者の関係において図-3の ような傾きが現われる理由は、図-1(b)の荷重検出 部に関する水圧の釣合において、上方からのものが断 面積A₀に相当する分だけ不足するためであり、実際、 傾き β =3.25 はA₀=3.14 cm に近いものとなっている。 したがって、等方圧密を行う際には、セル内の液圧だけ では上方からのこの断面積分の水圧が不釣合いとなる ために、側方圧力に等しい上記軸圧力を作用させる必 要がある。

次に、軟弱なへどろの供試体を予備圧密法によるの ではなく、セル内にて直接作成するために、二つ割り

軸荷重装置 増 加高 0 쁆 差動変位計 П AD変換器 コンピュータ (PC-8801) 荷重変換器 蓄圧タンク プリンタ-# 二重管式 5 支柱 ドュレット 供 試 体 三軸セル ナ 変

図-1(a) 低拘束圧試験装置の概要

図-1(b) 載荷部詳細図

試料セット前

試料セット完了

図ー4 供試体のセット方法

脱型(セル内注水後)

93

モールドを利用して、ゴムスリーブ内にスラリー状(含 水比は 230~260%)のヘどろを流しこみ、側圧を作用 させた後でモールドを開く方法®を採用した(図-4参 照)。なお、この方法における等方圧密前の供試体の大 きさは、直径 45 ㎜、高さ 110 ㎜である。

供試体には 1.0~1.5 kgf/cm²のパックプレッシャー を与え、等方圧密時における圧密終了の判断は、土質試 験法⁷に従って、圧密量一時間(対数目盛)曲線の最急線 を時間的に 3 倍だけ平行移動し、それが圧密量一時間 曲線と交わったときを圧密打ち切り時間とした。また、 せん断時の軸ひずみ速度は、間隙水圧を精度良く計測 できるように予備実験した結果、0.05%/minで実施 することにした。

新しい試験装置と比較するために、自然含水状態の へどろを含水比が120%程度になるまで脱水した後、 直径6.8 cm、高さ23.8 cmの塩化ビニールパイプ内にお いて0.5 kgf/cmの圧密圧力で予備圧密したものを、直 径 5 cm、高さ 12.5 cmの供試体に成形し、通常の三軸圧 縮試験装置を用いて実験した。

3. へどろの物理的特性

使用したへどろは水俣湾の海底に堆積しているもの

表-1 試料の物理特性

自然含水比	(%)	186.5
比	重	2.705
	液性限界 (%)	101.9
	塑性限界 (%)	52.2
,,,,	塑性指数	49.7
***	レキ分 (%)	2.1
	砂分 (%)	15.7
1 皮	シルト分 (%)	49.2
(八) 第 5	粘土分 (%)	33.0
鞅	最大粒径 (mm)	19.1
分類	日本統一土質分類	MH

を採取したもので、試料の物理特性と粒径加積曲線を 表-1と図-5に示す。へどろの組成は、主としてシル

図-5 へどろの粒径加積曲線

ト分(49.2%)と粘土分(33.0%)からなる。試料を x 線 分析すると石英、方解石、イライト、カオリナイト、白雲 母の鉱物とNaClが検出された。また、走査電子顕微鏡 で観察すると、粒径 5 μ m以下の微細粒子としては、写 真-1に示すような偏平形状のカオリナイトが団粒化 したペッドの他に、写真-2に示す多孔質な鉱物(ハロ イサイトとも考えられる)も一部観察された。液性限界 はLL=94.7~101.9%、塑性限界 PL=50.2~52.2%、 塑性指数PI=44.5~49.7 で、日本統一分類法に従えば "高塑性シルト、(MH)に分類される。自然含水比はW_n =175.6~186.5%と液性限界より高い含水状態にある。 なお、有機物含有量は 5.9%でありそれほど高くない。

写真-2 ポーラスな鉱物の走査型顕微鏡写真(立体写真)

-(4)-

4. 圧密非排水三軸圧縮試験結果と考察

(A)等方圧密試験

圧密圧力Pcを 0.1、0.3、0.5、0.7、1.0、1.5kgf/cmと 6段階に変化させて実験した。図一6は等方圧密時の 時間一体積変化量関係の一例を示したものである。低 拘束圧試験機での圧密による体積ひずみ量は表一2に 示すように 38.5~56.6%と通常の粘性土の場合に比 べて非常に大きい。圧密量一時間曲線から曲線定規法 に基づいて圧密係数Cvを求める場合、一般にはテルツ アーギの理論解が利用されているが、図一6に示した へどろのように圧密量が大きいときには、三笠⁶が提案 した圧密中に生じる層厚の変化を考慮した理論(式(1) 参照)に基づくほうが適当と考える。

$$\left. \begin{array}{l} \frac{\partial \zeta}{\partial t} = C_{\nu} \zeta^{2} \frac{\partial^{2} \zeta}{\partial Z_{o}^{2}} \\ \zeta = \frac{(\delta Z)_{o}}{(\delta Z)} \end{array} \right\}$$
(1)

ここに、らは圧密比

(δz)₀は粘土の最初の厚さ

(δz)はその考える時の厚さである。

(1)式を差分法で解き、曲線定規を作成した後、圧密量 一時間曲線にフィットさせ、圧密係数Cvを求めた結果 を表-2に示した。

まず、解析手法としてのテルツアーギ法と三笠法を 比較してみると、テルツアーギ法では実験データの極 めて初期の部分でしか一致しないのに対し、三笠法で は低拘束圧試験機の場合においても圧密後半部分まで

20 体積変化量(回) 08 09 05 05 08 験偃笠法 二立在 Terzaghi 法 100 101 ١Ö 10 101 経過時間 図-6(a) 時間一体積変化量曲線 (低拘束圧試験機、Pc=1.0 kgf/cm) 0 10 体積変化量(ca) 20 30 三笠法 40 Terzaghi法 ισī 10° 10' 102 10³ 経過時間 図-6(b) 時間一体積変化量曲線 (予備圧密法、Pc=1.0 kgf/cm)

良く一致している。その結果、テルツアーギ法では圧密 係数を大きめに評価する傾向にあり、特に、低拘束圧試 験機を用いて圧密圧力を大きくした場合にその傾向が 強い(例えば、圧密圧力が1.0kgf/cmのとき両者の比 は18:1となる)。試験装置の違いに関しては、三笠法 で解析した時、低拘束圧試験機の方が1/3~1/5と小さ めの値を与えている。

	an start - i-	集终体接下的不			圧密係数	数Cv(cm²/day)	
	(kg/cm ²)	取称10月1日相正 (%)	圧留前の間隙に	圧省後の間際比	三笠法	Terzaghi法	
予	0.3	9.835	1.809	1.549	175.651	374.239	
備	0.5	12.887	1.846	1.455	268.741	381.283	
空密	1.0	16.975	1.840	1.360	178.969	290.088	
法	1.5	19.053	1.793 、	1.275	148.029	269.110	
低	0.1	38.488	7.946	3.435	52.599	160.758	
拘	0.3	48.193	7.316	2.942	46.604	201.337	
東	0.5	53.658	7.345	2.621	56.229	374.225	
上試	0.7	50.415	6.574	2.485	61.720	633.277	
験	1.0	53.785	7.930	2.371	39.859	723.240	
法	1.5	56.582	7.447	2.148	41.789	1,003.577	

表-2 等方圧密試験結果

図-7は、梅原¹が日本各地の海底土に対して定ひず み試験装置を用いて圧密係数を求め、塑性指数との関 係を示した図である。本研究で評価された三笠法に基 づく値は、圧密圧力が0.1kgf/cm²のとき梅原の平均的 関係を示す線上に存在する。しかし、圧密圧力が1.0 kgf/cm²の場合には、梅原の平均的関係線は予備圧密 法による値と低拘束圧試験機による値の中間となって いる。

図-8は、等方圧密終了後の間隙比と圧密圧力との 関係を示したものである。予備圧密法の場合は低拘束 圧試験機による結果よりも間隙比が小さく、圧縮指数

図-8 圧縮曲線

Ccも小さめの評価を与えている。図一8に示すような 関係は粘性土を練返し再圧密するときの含水比を液性 限界より多くしたときと少なくしたときの関係³と類 似している。今回、予備圧密はこの点も考慮して液性限 界(101.9%)より大きな初期含水比で実施しているた め、この違いは、予備圧密の除荷と成形に伴う試料の乱 れが主たる原因と考えられる。

(B)三軸圧縮試験

表-3は、非排水三軸圧縮試験の結果を示したもの である。なお、破壊は主応力比グ1/グ3が最大となる点 とした。表より低拘束圧縮試験機を用いた場合、圧密圧 力が0.5kgf/m²以下のとき、供試体の含水比は97~ 127%と液性限界より大きい。通常、液性限界における せん断強さは20~30gf/cm²である⁹といわれているが、 本試験結果では、液性限界に近いpc=0.5kgf/cmでの せん断強さは230gf/cmとなり、1 オーダー大きい値 を示した。他方、予備圧密法による試験結果は、前述し た通り、等方圧密終了後の含水比が液性限界よりかな り低いにもかかわらず、そのせん断強さは低拘束圧試 験機の場合に比べて圧密圧力が低いところではほぼ等 しく、圧力の高いところで僅かに大きい程度である。限 界状態理論に基づけば、飽和粘土のせん断強さは含水 比(間隙比)・圧密圧力・過圧密比によって一義的に定ま る。本実験においては、両者の供試体は共に正規圧密状 態にあるので、当然、両者のせん断強さの関係は含水比 の小さい予備圧密法に基づくほうが大きめの値となる

	拘束圧力 (kg/cm [*])	含水比(%)	間隙比	σ,'/σ', の最大値	破壊時の歪	σ¦-σ' の最大値	Uf	Af	E _{so}	E,	E50/Cu
予	0.3	57.3	1.549	4.717	12.79	0.367	0.183	0.499	53	139	288
備日	0.5	53.8	1.455	4.268	13.55	0.553	0.333	0.602	89	217	321
密	1.0	50.3	1.360	4.471	16.20	0.989	0.719	0.727	136	353	274
压	1.5	47.1	1.275	4.552	15.77	1.501	1.085	0.723	214	476	285
	0.1	127.0	3.435	5.791	14.14	0.116	0.076	0.654	7	28	120
低物	0.3	108.8	2.942	5.887	14.49	0.352	0.228	0.648	30	88	170
東	0.5	96.9	2.621	4.250	14.87	0.463	0.358	0.772	39	116	168
上試	0.7	91.9	2.485	4.855	15.00	0.708	0.516	0.729	68	217	192
験辻	1.0	87.6	2.371	4.928	17.43	0.939	0.761	0.810	60	256	120
É	1.5	79.4	2.148	5.096	14.24	1.371	1.165	0.850	167	363	243

表-3 非排水三軸圧縮試験結果

はずである。ところが、表-3に示したように等しい圧 密圧力に対してほぼ等しいせん断強さを示した理由は、 八木ら^{3,4}が唱えているような土の構造の違いによるも のと思われるが、その詳細は今後の研究課題としたい。

図-9は、有効せん断抵抗角 ϕ' と有効粘着力c'を求 めるために破壊時の $(\sigma'_1 + \sigma'_3)/2 \varepsilon (\sigma'_1 - \sigma'_3)/2$ の関係を示したものである。図-9では、低拘束圧試験 機による方法も予備圧密法も同一直線上に存在し、せ ん断抵抗角に関しては試験法による差は現われず ϕ' =40.4" と評価された。これは八木ら³が強度定数に関 しては練り返し時の含水比は影響しないとした結論と 一致している。図-10は、通常の粘土における ϕ' と塑 性指数との関係¹⁰に水俣へどろの値を記入したもので ある。図-10より水俣へどろの ϕ' は異常に高い値であ ることがわかる。

図-10 ¢'とIpの関係

図-11に示した有効応力径路に関しては、低拘束圧 試験機における圧密圧力が0.5kgf/m以下の含水比 が液性限界以上の場合にも、応力径路は相似形を示し、 通常の粘土と同じ性質を示している。試験法の違いに 関しては、低拘束圧試験機法では平均主応力は減少し ながら限界状態線(CSL)に到達しているのに対し、予 備圧密法では平均主応力が限界状態線近くで最小値を 示したあとその値を増加させつつ限界状態線上に至る。 限界状態理論に従えば、非排水状態すなわち間隙比一 定では低拘束圧試験結果のような径路を通るはずであ り、再圧密法のような径路はダイレイタンシーすなわ ち間隙比に変化が生じていることを示唆している。

図-12は圧密圧力と非排水強度との関係を示した ものである。その傾き、すなわち強度増加率ΔCu/Δp

図-13 日本の港湾地域におけるC., / pとLの関係

は予備圧密法による値のほうがやや大きいもののほぼ 同じと考えて良く 0.5 である。この値を我が国の海底 粘土のもの¹¹と比較(図一13 参照)すると大きめの値で あり、Skemptonの経験式とも大きく異なる。

図ー14 は、応力一軸ひずみ曲線から割線変形係数 E_{so}と初期変形係数E_iを求め、圧密圧力との関係を示し たものである。ここに、応力一ひずみ曲線は双曲線に近 似できる¹²ものとして、 $\epsilon/q \sim \epsilon$ 関係の初期部分から求 めた。低拘束圧試験機からの結果は、両変形係数とも圧 密圧力に対し原点を通り線形的に増大しているとみな すことができ、Cam Clay理論から導かれる傾向¹³と一 致したものとなっている。また、このことはE_i/E_{so}が 圧密圧力によらず一定であることを示す。予備圧密法 の場合、E_{so}は原点を通る直線となっているが、E_iは原 点を通らない。これは、予備圧密法では、低圧密圧力部 での応力一ひずみ曲線初期部分において予備圧密によ る過圧密の影響が現われやすいためと考える。

図-14の直線の傾きΔE/Δpを深草・四日市・カオリ ン粘土のもの¹⁰(ひずみ速度は0.04%/min)と比較し たのが図-15である。水俣へどろの値は、E₅oではかな り大きめに、E,では逆にやや小さめになっている。深草 粘土等の場合、練り返し時の含水比は液性限界よりや や高い程度の状態で試験されていることが原因とも考 えられる。

変形係数に関する今回の結果は、(1)八木ら'は練り返 し時の含水比が低いほうが E_{so} も低くなることを示し ているが、それと逆の傾向を示している、(2)一般に E_{so}/C_u の値が小さいほど(例えば、165以下)乱れが大 きいといわれているが、 C_c の結果から乱れが大きいと 判断される再圧密法のほうが E_{so}/C_u は大きい、等従来 の見解と一致しない点もある。

5.おわりに

液性限界以上の含水状態にあるへどろの強度・変形 特性を評価しうる試験装置として低拘束圧三軸圧縮試 験機を試作した。本研究によって得られた主な結論は 以下の通りである。

1) 試作した低拘束圧三軸圧縮試験機は液性状態にあ る粘土試料を試験するのに有効である。

2)へどろのような軟弱な粘土を従来からの予備圧密

に基づいて供試体を作成し、三軸圧縮試験を実施すると、強度常数(ϕ '、Cu)は正しく評価されるが、変形特性のうちCv、 E_{so} 、 E_i は大きめに、Ccは小さめに評価される。

 3)水俣へどろの土質特性は、φ'、ΔCu/Δp、ΔE/Δp に関して、我国の海底粘土の平均的傾向と異なる値 を示す。

今後は、この試験機を用いて3)の水俣へどろの特異 性について解明および圧密進行に伴う強度の変化等を 明らかにしていきたい。

2.0

参考文献

- 1) 梅原靖文(1983):土の圧密特性とその試験法に関 する研究、学位論文
- 2)Goro Imai(1979) : Development of a new consolidation test procedure using seepage force, S& F
- 3)八木則男他(1983):練り返し時含水比の異なる
 再圧密土の力学特性、土木学会論文報告集
- 4)八木則男 他(1984):乱れを受けた飽和粘性土の 力学特性、土木学会論文集
- 5)今泉繁良 他(1980):高感度貫入試験機による堆 積へどろの調査例、土と基礎
- 6)山口柏樹 他(1984):飽和粘土のCUC、DCにおけ る強度・変形特性、第19回土質工学発表会

- 7) 土質工学会(1979): 土質調査法
- 8) 三笠正人(1963): 軟弱粘土の圧密、鹿島出版会
- 9) ゴールドシュティン(大草重康訳)(1976):新しい 土質力学、森北出版
- 10) 今泉繁良 他(1986): 塑性の異なる飽和粘性土の CIUCにおける強度・変形特性、第21回土質工学研 究発表会
- 11) 中瀨明男(1984):海洋土質、技報堂出版
- 12) R.L.Kondner(1963) : Hyperbolic Stress-Strain Response, Proc. of ASCE SM1
- 13)石原研而 他(1980):土質力学、彰国社