XRD による結晶構造解析について

佐藤徹哉 熊本大学 工学部技術部

1. はじめに

結晶構造解析には、大きく二通りの方法がある。 その一つは、単結晶試料を用いた単結晶 X 線構造解 析法である。これは、一辺が 0.2-0.5 mm 程度の単結 晶一粒を用いて反射強度を測定し、反射データから 結晶構造を求める手法である。有機化合物をはじめ として、タンパク質などの巨大分子の構造解析も可 能であり、測定に適した単結晶一粒さえあれば、信 頼性のある結晶構造を求めることができる。しかし、 測定できる試料は単結晶のみという制約がある。他 方、XRD(X-Ray Diffraction)を用いた結晶構造解析は、 多結晶の粉末試料を用いてX線回折パターンを測定 し、得られたデータと構造モデルを用いて構造解析 を行う手法であり、リートベルト解析法として知ら れている。この手法では、単結晶化が困難な試料に も適用でき、また試料の調整や測定法が簡便などの 利点がある。そして実際の実用材料の多くは多結晶 であり、多結晶での結晶構造を知りたいという要望 もある。特に触媒材料の設計支援のための計算化学 において、触媒試料の精確な結晶構造の情報が求め られる。そこで今回、Hoエネルギーキャリアとして 注目されているNH₃合成および分解触媒である金属 酸化物群を、リートベルト解析法により結晶構造解 析を行ったので報告する。

2. 実験方法

粉末試料は外部機関により調製された Pr_6O_{11} を用 いた。X線回折計は Rigaku 製の Rint 2500 を使用し、 X線管球は Cu 回転対陰極、試料台には回転試料台、 受光側の検出器手前に平板グラファイトモノクロメ ーター、検出器にはシンチレーションカウンターを 用いた。X線出力は管電圧 40 kV、管電流 200 mA、 走査範囲は 2 θ = 10-120°で走査した。スキャン方

法は一定時間計数する Step Scan であり、スキャン幅 は 0.02°、ステップごとの計数時間は 4 sec / step、 発散スリットは 0.2 mm、発散縦制限スリットは 5 mm、受光スリットは0.8 mm、散乱スリットおよび モノクロ受光スリットは開放の条件で測定を行った。 得られた回折パターンについて RIETAN-FP¹⁾を用い てリートベルト解析を行った。Table 1 に構造モデル の組み合わせとリートベルト解析結果を示す。単相 解析では、Pr₆O₁₁, PrO₂, Pr₅O₉, Pr₇O₁₂, Pr₉O₁₆の構造モ デルでバックグラウンド関数には8次多項式、プロ ファイル関数は分割疑フォークト関数を用いた。多 相解析では、第1相はPr₆O₁₁, Pr₅O₉, Pr₇O₁₂, Pr₉O₁₆で、 第2相はPrO2の構造モデルの組み合わせであり、バ ックグラウンド関数には10次多項式、プロファイル 関数は Thompson, Cox, Hastings (TCH)の疑フォーク ト関数を用いた。また第2相のPrO2の格子定数はa = 5.40-5.47 Åの範囲で文献報告があることから、 PrO_2 の格子定数の初期値を No 6 では a = 5.40 Å、 No7ではa=5.47 Åにそれぞれ設定し精密化を行っ た。なお等方性原子変位パラメーターUの精密化に おいて、各サイトで独立して精密化すると負の値や サイトによって大きくかけ離れた値になった結果か ら、すべてのサイトにおいて同じ値になるよう制約 をかけて精密化を行った。

結果と考察

まず単相での解析では、いずれの構造でもプロフ アイルのフィッティングの良さを表すSは1.8~2で、 重み付けされたパターンの信頼性因子 *R*wp は 9~ 10%台であることから、充分な信頼性のある結果と は言い難い。また No4の Pr₇O₁₂では、測定データと 構造モデルの反射角度が著しく異なることから、解 析途中でエラーになり解析不可であった。次に多相 での解析では、全体的に単相よりもSおよび信頼性

因子は大きく改善され、No6のPr₆O₁₁とPrO₂(格子 定数の初期値 a = 5.40 Å)の組み合わせでは、 $R_{wp} =$ 5.97 %, S = 1.09 と最も良好な結果を得た。Fig. 1 に No 6 の Pr₆O₁₁+ PrO₂多相でのリートベルト解析パタ ーンを示す。第2相の PrO2の測定データと計算デー タの反射位置は高角度側でもよく一致していること がわかる。精密化した構造パラメーターにおいて等 方性原子変位パラメーターU では、Pr のほうが O よ りも大きくなる結果となった。通常、原子変位パラ メーターUの値は、軽元素ほど大きく重元素ほど小 さくなる傾向にある。今回の解析において、精密化 初期段階では原子変位パラメーターU の初期値は Pr_6O_{11} の文献値²⁾(O: U = 0.01056 Å², Pr: U = 0.0063 A²)に設定し、プロファイルのフィッティングがあ る程度良くなった後に、原子変位パラメーターU を 精密化した。PrのUは文献値と比較して近い値とな ったが、OのUは大きくかけ離れた値となった。こ の結果から、測定データに物理的に意味のある Uの 値が求まるほど情報が含まれていないなどの理由が

考えられる。

4. 結論

リートベルト解析の結果から、主相は Pr_6O_{11} で副 相は PrO_2 の多相状態である可能性が高く、精密化後 の定量結果では質量比で Pr_6O_{11} : $PrO_2 = 0.7037$: 0.2963 であった。今後の検討課題として、構造解析 に適した質の良い回折強度データの取得と高分解能 TEM による結晶構造像の直接観察などを用いて、構 造解析の精度と確度を高める予定である。

- 5. 参考文献
- F. Izumi and K. Momma, "Three-dimensional visualization in powder diffraction," Solid State Phenom., 130, 15-20 (2007).
- Zhang, J., von Dreele, R.B. and Eyring, L.
 "Structures in the Oxygen-Deficient Fluorite-Related R_nO_{2n-2} Homologous Series: Pr₁₂O₂₂," J. Solid State Chem., 122, 53-58(1996)

Table1. 構造モデルの組み合わせとリートベルト解析結果

No	First phase		Second phase		Reliability factors					Commont
	Chemical formula	Space group	Chemical formula	Space group	$R_{ m wp}$	$R_{\rm p}$	$R_{\rm R}$	R _e	S	Comment
1	Pr_6O_{11}	P21/c	-	-	10.28	7.45	10.05	5.48	1.88	
2	PrO ₂	Fm-3m	-	-	11.85	8.94	12.44	5.48	2.16	
3	Pr_5O_9	P21/c	-	-	10.33	7.72	10.49	5.48	1.89	
4	Pr_7O_{12}	R-3	-	-	-	-	-	-	-	・エラー
5	Pr_9O_{16}	P-1	-	-	9.90	7.24	10.02	5.47	1.81	
6	Pr_6O_{11}	P21/c	PrO_2	Fm-3m	5.97	4.12	5.73	5.48	1.09	・初期値5.40 Å
7	Pr_6O_{11}	P21/c	PrO_2	Fm-3m	7.81	5.53	7.63	5.48	1.43	・初期値5.47 Å
8	Pr ₅ O ₉	P21/c	PrO_2	Fm-3m	6.25	4.28	5.86	5.48	1.14	
9	Pr_7O_{12}	R-3	PrO_2	Fm-3m	-	-	-	-	-	・エラー
10	Pr_9O_{16}	P-1	PrO ₂	Fm-3m	6.54	4.47	6.23	5.47	1.20	

Fig. 1 Pr₆O₁₁+ PrO₂多相でのリートベルト解析パターン