ウルトラミクロトームによる TEM 薄片試料の調製について

佐藤 徹哉 機器分析・化学 WG

1 はじめに

透過電子顕微鏡(TEM)で得られる像は、試料を透 過した電子もしくは試料内で回折した電子の情報で ある。そのため、一般的な加速電圧 200 kV の TEM に用いられる試料は、電子線が透過できるよう数 100 nm 以下の薄片に調製する必要がある。試料を薄 片化する方法としては、FIB やイオンミリングなど 加速させたイオンビームによる加工、金属など導電 性のある試料では酸溶液中で電気化学的に試料を溶 解させて薄片化する電解研磨、軟質な試料では樹脂 に包埋してダイヤモンドナイフやガラスナイフなど 鋭利な刃物で薄片を切り出すウルトラミクロトーム、 粉末試料では水やエタノールなどの溶媒中に超音波 洗浄機で分散させて TEM グリッド上に滴下する破 砕法がある。試料の状態や加工法の特性に合わせて 各手法が用いられているが、化学系の分野では実験 試料の形態が粉末であることが多いことから、破砕 法や高分子など軟質な試料の場合ではウルトラミク ロトームを用いて薄片を調製することがある。

平成 25 年 11 月に、工学部物質生命化学科に 120 kV TEM が導入され、装置の維持管理および学生へ の操作指導を担当することになった。そこで、試料 調製ならびに観察技術の向上を目的として、ウルト ラミクロトームによる薄片試料の調製および TEM 観察を行ったので報告する。

2 内 容

2.1 ウルトラミクロトームによる薄片試料の調製 今回の観察試料は、TEM用の写真フィルムを用い ることとした。現像処理により析出したフィルム内 のAg粒子を観察することを目的としている。フィ ルムは軟質な高分子材料などから形成されているた め、比較的安価なガラスナイフを用いたウルトラミ クロトームによる薄片加工が可能である。そこで、 まず樹脂に包埋するため、現像処理したフィルムを 幅1 mm長さ5 mm程度に切断し、フィルム試料を 入れた BEEM カプセルにアラルダイト樹脂を充填し て、60℃で48時間以上静置して硬化させた。硬化後、 BEEM カプセルから樹脂を取り出し、先端の切断面 の面積が1mm²になるようカミソリでトリミングし、 切断面が平坦な面になるよう面だしを行った。次に、 ウルトラミクロトーム本体にガラスナイフをセット し、試料厚さが 0.5 µm になるよう切り出しを行った。 純水を張ったクイックボートの水面に浮いている薄 片を白金ループですくいだし、TEM 用グリッドに移 した。水分を取り除き、減圧乾燥させた後に、日本 電子製 JEM 1400 plus にて TEM 観察を行った。

2.2 TEM 観察結果

実体顕微鏡による TEM グリット上の薄片試料の 観察結果を図1に示す。干渉色を呈している薄片が TEM グリッド上に固定されていることがわかる。薄 片中央部分にフィルム、その外周部分が包埋樹脂に

図1 切り出した TEM グリット上の薄片試料

なる。フィルム内の Ag 粒子を観察するためには、 フィルムの断面方向から観察する必要がある。しか し、樹脂に包埋する際にフィルムは傾斜した状態で 硬化したことから、切り出した薄片中のフィルムも 垂直方向からではなく斜め方向から切り出されおり、 フィルム厚さ以上の厚さで切り出された。また、今 回の切り出した薄片は波打っていることがわかる。 より切削能力の高いダイヤモンドナイフを用いるこ とで、より平滑で薄い薄片が得られると期待される。

次に、加速電圧 80 kV で観察した TEM 像を図 2 に示す。試料フィルムと包埋樹脂の密着性が低く剥 離しており、(a)の像から試料の一部ではフィルムが 破れている様子がわかった。試料フィルムの層構造 は確認できないが、フィルムと樹脂の界面近くに粒 子が確認でき、これらが現像により析出した Ag 粒 子であると考えられる。この部分を拡大した(b)の像 では、サブミクロンオーダーの粒子であることがわ かった。これをさらに拡大した像が(c)であるが、100 nm 程度の粒子の集合体であることがわかった。フィ ルムの乳剤層には、ハロゲン化銀AgX(X:ハロゲン) が含まれている。電子や光、X線が照射されるとハ ロゲン化銀が還元されて、潜像核と呼ばれる Ag 粒 子が生成される。さらに現像処理により、潜像核を 中心に Agイオンの還元が促進されて Ag 粒子が成長 するが、これらは現像核と呼ばれる。今回観察され たサブミクロンの粒子は100 nm サイズの Ag 粒子の 集合体であることから、観察されたサブミクロンサ イズの粒子はAgの現像核であることがわかる。

図2加速電圧80kVによるTEM像

100.0 nm

3 まとめ

ウルトラミクロトームによる薄片調製技術の習得 と TEM 観察技術の向上を目的として、フィルムを 樹脂包埋してウルトラミクロトームで薄片加工し、 フィルム内の現像核である Ag 粒子を観察すること ができた。今後の課題として、試料のフィルムと樹 脂が剥離した部分やフィルムの破れなど試料構造の 崩壊が確認されたことから、ウルトラミクロトーム による切り出し条件などを再検討する必要がある。

謝辞

(a)

ウルトラミクロトームによる薄片加工を行うにあ たり、ご指導頂きましたイノベーション推進機構の 緒方智成先生に深く感謝いたします。