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ABSTRACT 
 

A newly designed structure named folded cantilever shear structure (FCSS) is 

proposed as an alternative seismic isolation approach that combines coupling method and 

roller bearings in one structure for improving earthquake resistant ability and seismic 

performance of mid-rise buildings. Seismic characteristics of the proposed structure have 

been investigated by conducting numerical analyses on the idealized vibration model with 

and without additional viscous dampers. Dynamic parameters such as natural frequencies, 

damping ratios and mode shapes, and seismic responses due to elastic dynamic response 

analysis were also obtained under four exemplary ground motions, namely El-Centro, 

Hachinohe, Miyagi and Taft earthquakes. The proposed structure consists of fix-supported 

shear sub-frame and movable shear sub-frame supported by roller bearings, and these fully-

separated sub-frames were rigidly connected by a connection sub-frame at the top point. This 

will allow all three sub-frames to behave as a unique structure to increase the overall seismic 

performance. It was found that the proposed structure is capable of extending natural period 

and minimizing accelerations, displacements and base shear forces simultaneously, when 

compared to ordinary structure which has the same number of storey. However, relative 

displacements, for the proposed structure without additional dampers, with respect to the base 

were obtained relatively higher. Therefore, additional viscous dampers were added between 

adjacent beams to connect both sub-frames with the aim of avoiding excessive displacements 

and increasing the damping ratio as well. 
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1. INTRODUCTION 

 
Base isolation systems have become one of the most widely used and well-adopted 

seismic isolation measures providing numerous alternatives to design optimum solution for 

the structures in reducing seismic responses. What makes base isolation systems more 

attractive is that these isolation systems are increasingly implemented and tested in practice 

result in satisfying seismic performance. Moreover, base isolation systems, contrary to 

strengthening methods which are common measures for seismic isolation, can simultaneously 

reduce floor accelerations and relative displacement of floors with respect to base [1], and 

can be implemented for any height of structure that already exist or newly designed.  

Another seismic isolation method which has mainly applied to mid-rise buildings and 

increasingly become an interest of area is coupling method enabling connection of adjacent 

structures using rigid elements or passive damper devices in reducing seismic responses. 

Coupling method is similar to base isolation method in that it also can be implemented either 

in existing or newly designed structures not only for reducing pounding possibility but also 

increasing seismic performance. Ohami et al., tried to improve the seismic reliability of an 

existing structure built in accordance with old provisions of building codes of Japan before 

revisions were made in 1981. Different heights of buildings, one is 5-storey representing old 

building and the other is 10-storey building representing newly designed building, were 

selected to be idealized shear models for numerical analysis and interconnections were made 

by using rigid connection elements and viscous dampers. The reason for choosing buildings 

of different heights was reported that responses of coupled buildings could not be reduced 

when similar height of buildings was chosen [2]. However, it should be noted that researchers 

mainly used coupling method on buildings of fixed boundary conditions. As a result, it was 

found that it is more effective to design new building to be connected to old one as stiff 

building instead of flexible building with rigid connection elements, and rigid connection 

elements were insufficient to prevent the collapse of 5-storey old building when incorporated 

in flexible building. Another notable study was carried out [3] using experimental building 

models coupling 12-storey building model to 3-storey low-rise podium structure in 3 different 

configurations which are respectively fully-separated, rigidly connected and friction damped-

linked. According to the results, passively controlled buildings provided most effective 

performance when compared to other cases. Interestingly, the rigidly connected buildings 

gave rise to increase in seismic responses. Xu et al. also stated that fluid damper connected 

buildings are more effective in reducing seismic responses for lower adjacent buildings than 

of higher ones and fluid dampers are more favorable for buildings of same height than those 

of different heights [4]. 

Aida et al., tried to improve the damping performance of adjacent structures by 

linking them using only one member which consists of only one spring and one damper 

element that was a soft member. It was found that the damping performance increases as long 

as first natural periods of structures become different and the most effective connection part 

for the structures was obtained near to the top part of the structures [5]. 

As above mentioned, Agarwal et al. confirmed that most of buildings have been 

configured with fixed conditions since base isolation is a relatively new modification 

technique [6]. Therefore, they studied pounding response of two friction varying base isolated 
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buildings to clarify the seismic behavior of adjacent buildings of similar heights. The 

analyses of two buildings were conducted in three cases which are single base isolated 

building, adjacent buildings without base isolation and base isolated buildings. According to 

the results, there was little or no interaction between buildings for the case of single base 

isolated building. In another study, Abdullah used shared tuned mass system connecting two 

8-storey buildings to each other at the roof with the aim of decreasing the overall response of 

the buildings and pounding possibility, as well [7]. 

In the view of these studies, it can be summarized that coupling method can be 

effective solution to deal with the problem of not only pounding but also decreasing seismic 

responses of mid-rise buildings. However, most of researchers used buildings of different 

heights with fix-supported conditions. When using buildings of similar heights, fixed-

supported buildings are likely to be insufficient in increasing seismic performance. Therefore, 

buildings of these configurations to be connected can be supported by viscous damping 

devices for favorable outcome. As for buildings of similar heights, it is also another option to 

connect them at the roof but, for the case of fixed-supported buildings, soft connection 

element can be more effective on overall responses if buildings are dissimilar in terms of 

natural frequency. 

The main objective of this study is to propose an alternative seismic isolation 

approach incorporating base isolation system and coupling method into a mid-rise structure 

with the aim of increasing seismic performance and natural period. Therefore, a new 

configuration of buildings of similar heights has been studied by connecting them at the roof 

part. The boundary conditions were selected to be one fixed supported building and the other 

one to be base isolated building while using rigid connection element at the top part. In order 

to investigate seismic characteristics of the proposed vibration model, numerical analyses 

were conducted on the idealized vibration model with and without additional viscous 

dampers. As for damper-added buildings, some studies have been proposed offering practical 

and effective damper placement methods [8-11] and some of these placement methods were 

compared by Whittle in terms of effectiveness [12]. Despite of these methods’ benefits, these 

techniques are for advanced optimization, and the vibration model of our study with 

additional viscous dampers was assumed to be uniformly distributed to clarify whether the 

newly designed structure is effective in reducing seismic responses. 

A standard acceleration response spectrum of an ordinary structure with 5% damping 

ratio is given in Fig. 1. The natural period of an ordinary mid-rise structure is likely to be 

around 1 sec, and as expected, the acceleration of the structure reduces as long as period 

increases. As for the proposed structure named folded cantilever shear structure (FCSS), it is 

able to extend the first natural period almost two times compared to ordinary folded 

cantilever shear structure (OCSS), by increasing the floor number by a factor of two without 

changing the total height of structure. For this purpose, the proposed structure is designed 

consists of three main parts, namely, fix-supported shear sub-frame, movable shear sub-frame 

which is supported by roller bearings and connection sub-frame at the top part connecting 

these sub-frames to each other and uniting them as one structure. Besides, adjacent beams of 

sub-frames were connected to each other by additional viscous dampers to avoid excessive 

displacements and to increase the damping ratio as well. 
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Fig. 1 Standard acceleration response spectrum due to increasing period and damping ratio 

 

2. NATURAL VIBRATION CHARACTERISTICS OF A MULT-STOREY 

STRUCTURE 
 

2.1 Vibration model 

 

In this section, the natural vibration characteristics of an ordinary multi-storey 

structure are theoretically given. 

 

 
 

Fig. 2 Ordinary structure system-O   Fig. 3 Deformed frame of system-O 

 

Fig. 2 illustrates a two-dimensional vibration model of an ordinary multi-storey shear 

structure. The vibration model, named as system-O, has fixed end consisting n number of 

storey. Beams are represented as B1, B2, ···, Bn, and columns and dashpots are identical in 

terms of dynamic characteristics for each storey. The letter m stands for the mass of beam, k 

is the shear spring coefficient of column and c is the viscous damping coefficient of dashpot 

to represent the structural damping of idealized vibration model. The total height of the n-

storey vibration model is H and each storey has a height of h, H=nh. The beams are carrying 

the concentrated masses of beams and columns at their center. 
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2.2 The equation of motion of ordinary structure under base excitation 
 

The deformed frame and the internal forces of system-O due to displacement 

excitation are illustrated in Fig. 3, under z(t) time-varying ground motion, where z is the 

relative displacement of the base from its origin and x1,x2,�,xn are the lateral displacements 

of beam B1, B2, ···, Bn. The relative displacement for the i-th storey, Bi, is z + xi whereas 

shear and viscous damping forces between beam Bi and Bi+1 are represented as Se,i and Sc,i, 

respectively. The inertia force of beam Bi is also represented as Sm. The equilibrium of the 

forces of beams are become as following equation,  
 

-Sm,i + Sc i - Sc,i-1 + Se,i - Se,i-1  = 0,  1 ≤ i < n                             (1) 
 

-Sm,n - Sc,n-1 - Se,n-1 = 0                                                                   
 

The shear, viscous damping and the inertia forces between the beams can be expressed as 

Se,i = k �xi+1-xi�, Sc,i = c�x� i+1-x� i� and Sm,i = m�z�+x� i�, respectively where x� i and x� i stands 

for first and second derivation of displacement, xi. And z� is the acceleration of the ground. 
 

With respect to ground floor, shear and damping forces of the beam can be expressed as 

Se,0 = k�x1� and Sc,0 = c�x�1�, respectively. After substituting these equations of the forces 

into Eq. (1), the equation of the motion of system-O due to lateral displacement excitation 

becomes as the following equation, 
 

M(n)x�(n)+ C(n)x�(n) + K(n)x(n) = -z�M�n�p�n�                                     (2) 
 

Where, p�n� is the column vector which has all its elements equal to 1, x(n)≡	x1,x2,�,xn
T, 

x� (n)≡�x�1,x�2,�,x�n�T and x� (n)≡�x�1,x�2,�,x�n�T are the displacement, velocity and acceleration 

vectors, respectively. The letter (n) denotes the size of square matrices for n number of storey 

and T stands for transverse.  
 

2.3 Natural period characteristics 
 

A simple equation is derived that let us estimate the natural period of the n storey 

ordinary structure of Fig.2, a MDOF system, by using inter-storey parameters of the same 

structure which can be assumed as SDOF system. Note that the letters with overhead bars of 

Eq. (3a) and (3b) such as, natural period T, damping ratio ζ�, and the natural frequency ω�, 

are the parameters of inter-storey of system-O, Fig. 4, that can be calculated by means of 

basic equations of structural dynamics. 
 

 
 

Fig. 4 Inter-storey section of system-O 
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T = 2π
ω�  ≡ 2π�m

k
                                               (3a) 

 

ζ  �≡  
c

2√mk
                                                         (3b) 

 

The eigenproblem of the undamped structure of system-O becomes as in Eq. (4a), 
 �K(n)-ω2M(n)�φ(n) = 0                                          (4a) 
 

Here, ω and φ(n) are the natural frequency and corresponding eigenvector. Eq. (4a) after 

substituting Eq. (4a) after substituting unit matrix I^(n) and the tri-diagonal stifness matrix 

Q^(n) becomes standard eigenvalue problem, 
 

NOTE : I^(n) and Q^(n) should be same as in Eq. (4b) with superscript and italic, 

 �Q(n)
-λ
2
I(n)�φ(n) = 0                                            (4b) 

 

where λ is the eigenvalue. The natural frequency ratio λi, gives the ratio between the natural 

frequency of vibration model ωi, and natural frequency of inter-story ω�. Besides, the natural 

period of the vibration model Ti, and natural period of inter-story T, becomes as follows, 

 

λi = 
ωi

ω�  = 
T
Ti

                                                          (5) 

 

The eigenvector φ
i
(n) is normalized to satisfy the orthogonal condition and δij is treated as 

Kronecker delta, Eq. (6a) and Eq. (6b). 

 

φ
i
�n�TQ(n)

φ
j

(n)
 = δijλi

2
                                               (6a) 

φ
i
�n�Tφ

j

(n)
 = δij                                                         (6b) 

Numerical equations of natural frequency ratio λi and eigenvector φ
i
(n) become, 

 

λi = 2sin � 2i-1
4n+2

π� ,   1 ≤ i ≤ n                                  (7) 

 

φ
i
(n) ≡ 	�1,i

(n)
,�2,i

(n)
,�,�n,i

(n)
T                                      (8a) 
 

�j,i

(n)
 = 

2√2n+1 sin � 2i-1
2n+1

jπ�                                 (8b) 

 

After proportioning the Eq. (5) and Eq. (7), the ratio between the natural period of the 

vibration model and of inter-story can be estimated, 

 
Ti

T  = 
1

2
cosec � 2i-1

4n+2
π� ,   1 ≤ i ≤ n                       (9) 
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An approximate equation becomes as in follows of the first natural period on the basis of Eq. (9) 

in case that 1�n, 

 

T1  ≈ 
T
π
 �2n+1�                                                   (10a) 

 

That is, the first natural period of structure can be extended as long as the number of storey n, 

increases for a specified natural period of inter-storey T. The primary natural period for design 

use of the building can be calculated by following equation due to The Building Standard Law of 

Japan [13], 

 

T1 = ηH                                                             (10b) 
 

where η, is specified respectively as 0.03 and 0.02 for Steel (S) and Reinforcement (RC) 

structures, The Building Standard Law of Japan [13]. Therefore, the first natural period is likely 

to be around 1 sec for mid-rise buildings of 40~60 m height. After proportioning the right sides of 

the Eq. (10a) and Eq. (10b), the approximate equation of inter-storey, for the first natural period, 

becomes, 

 

T �≈ 
πηh

2+1/n
                                                           (11) 

 

In section 6, these approximate equations’ results will be compared to the results of numerical 

analyses using given parameters of illustrative example. 

 

2.4 Viscous damping characteristics 
 

The equation of viscous damping ratios of the vibration model and of inter-story 

becomes as in Eq. (12) by using the eigenvector of System-O, φ
i
(n) and viscous damping ratio 

due to orthogonality condition of Eq. (8a) and Eq. (8b). 

 
ζi

ζ�  = λi = 2 sin � 2i-1
4n+2

π� ,   1 ≤ i ≤ n                 (12) 

 

An approximate result can be obtained by derived Eq. (12) in case that, 1�n for the first natural 

vibration vector, 

 

ζ1 ≈ 
πζ�

2n+1
                                                       (13a) 

 

If the viscous damping ratio of the system-O is estimated for a specified ζ� the viscous damping 

ratio of the first mode is decreased as long as the number of storey, n increases. Considering, the 

viscous damping ratio of first mode of S and RC structures are around 1%~%5, and the relation 

between the structure height and the viscous damping ratio can be obtained after substituting the 

estimated viscous damping ratio ζ1
*
, into Eq. (13a). 

 

ζ �≈ 2n+1
π

ζ
1
*
                                                    (13b) 
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3. FOLDED CANTILEVER SHEAR STRUCTURE 

 

The main objective of the proposed building is to extend the first natural period 

almost two times by increasing the floor number by a factor of two in such a way that neither 

the number of storey n, nor structural height of ordinary structure H, has been altered. 

Therefore it is designed as an assembly of three different parts in one structure as seen in Fig. 

5. The vibration model consists of a fix-supported shear sub-frame and movable shear sub-

frame supported by roller bearings. These sub-frames are interconnected by a rigid 

connection frame at the top of the structure to enable separated sub-frames to move together 

as unique structure during any excitation. 

In brief, it can be assumed that a 2n-storey of ordinary structure with the height of 

2H is equalized to n-storey of proposed structure with the height of H. 

As mentioned in abstract, the numerical analyses were conducted on the idealized vibration 

model with and without additional viscous dampers. The vibration model given in Fig. 5, is 

named as system-AD since its additional dampers attached between the adjacent beams of 

fixed and movable sub-frames against excessive displacements. 

Beams were named as B1, B2, �, Bi-1, Bi, Bi+1, ···, Bn-1 starting from the fixed shear 

sub-frame, Fig. 5. Then, the uppermost rigid connection beam was named as Bn. On the side 

of movable sub-frame, beams were continued to be named as Bn+1, Bn+2, ···, Bj-1, Bj, Bj+1, ··· 

and B2n. Beam-2n is the one that is supported by roller bearings and it can move along x and z 

directions. 

 

 
Fig. 5 Folded cantilever shear structure system-AD 

 

The beams are carrying the concentrated masses of beam and columns at their center, 

and mA represents the lumped masses of beams starting from beam-1 to beam-(n-1) on the 

side of fixed sub-frame, and from beam-(n+1) to beam-(2n-1) on the side of movable sub-

frame. The masses of beam-n and beam-2n were represented as (1+α)mA and (1+β)mA where 

α and β are the mass factors of Bn and B2n, respectively. In the following sections, dynamic 
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parameters of the proposed vibration model were obtained for two different cases, α = β = 0, 

that is, the mass of all beams are equal to each other, and α = 1 and β = 2. Besides, each 

storey of idealized vibration model has equal structural damping ratio of dashpot cA, and 

shear spring coefficient kA. 

In the section 4 and 5, the equations of motion for the proposed model without and 

with additional dampers are given, and dynamic parameters for two cases were obtained by 

numerical analyses. 
 

4. FOLDED CANTILEVER SHEAR STRUCTURE WITHOUT ADDITIONAL 

DAMPERS 
 

The proposed vibration model without additional dampers is illustrated in Fig. 6, and 

is named as system-A. System-A is identical to system-AD in every respect except additional 

dampers. 
 

4.1 The equation of motion of undamped proposed structure under base excitation 
 

The deformed frame and internal forces of system-A due to displacement excitation 

are illustrated in Fig. 6, under z(t) time-varying ground motion, where z is the relative 

displacement of the base from its origin and x1,x2,···,x2n are the lateral displacements of 

beam B1, B2, ···, B2n. 

 

 
 

Fig. 6 Undamped folded cantilever shear structure system-A 

 
The relative displacement of the i-th storey of the fixed sub-frame is z + xi with 

respect to origin, and shear and viscous damping forces between beam Bi and Bi+1 are 

respectively, Se,i and Sc,i. On the opposite side, the shear and viscous damping forces between 

beam Bj and Bj+1 are Se,j and Sc,j, respectively. The inertia forces of beams are Sm,1, Sm,2, ···, 

Sm,2n for the beam B1, B2, ···, B2n. The equilibriums of the forces on beams; Bi, Bj and Bn 

become, 
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-Sm,i + Sc,i - Sc,i-1 + Se,i - Se,i-1 = 0,  1 ≤ i < 2n                            (14a) 
 

-Sm,n - Sc,2n-1 - Se,2n-1 - fsgn�x�2n�  = 0                                    (14b) 
 

where, f is the coulomb frictional force resisting against the movement of beam B2n. Besides, 

Se,i = kA�xi+1-xi� and Sc,i = cA�x� i+1-x� i� are the shear and damping forces between the beams, 

respectively. As for beam B2n, Se,0 = kAx2n, Sc,0 = cAx�2n and Sm,i = mA�z�-x�2n� are the shear, 

damping and inertia forces, respectively. After substituting these equations of the forces into Eq. 

(14a) and Eq. (14b), the equation of the motion of system-A becomes as the following equation, 

 

MA

(2n)
x� (2n) + CA

(2n)
x� (2n) + KA

(2n)
x(2n) = -z�MA

(2n)
p�2n� - fe2n(2n)sgn�x�2n(2n)�              (15) 

 

Here ei
(2n)

 is the 2n size of unit vector, and x� (2n), x� (2n) and x(2n) are the acceleration, velocity 

and displacement matrix vectors that of 2n number of storey. KA
(2n)

, CA
(2n)

 and MA
(2n)

 are the 

stiffness, damping and mass matrices of Eq. (17). 
 

KA

(2n)
 = kAQ

�2n�                                                     (16a) 
 

CA
(2n)

 = cAQ
�2n�                                                     (16b) 

 

MA
(2n)

 = mA�I�2n�+J(2n)�                                          (16c) 
 

J(2n) = αen
�2n�

en
�2n�T

+βe2n
�2n�

e2n
�2n�T

                             (16d) 

 

Here J(2n)is the mass matrix component of Bn and B2n with α and β mass factors of different 

values, which is 2n size of square matrix in condition that all elements are equal to 0.  

 

4.2 Natural period characteristics 
 

Dynamic parameters of system-A can be obtained as in the following equations similar 

to system-O where TA, ω�A and ζ�
A
 stands for natural period, circular frequency and damping 

ratio of inter-story, respectively. 

 

TA=
2π

ω�A

=2π�mA

kA
                                                (17a) 

 

ζ�c= cA

2�mAkA
                                                       (17b) 

 

If the coulomb frictional force of roller bearings is neglected, the eigenproblem becomes, 

 �KA

(2n)
-ωA

2MA

(2n)�φ
A

(2n)
 = 0                                                (18a) 

 

Here, ωA and φ
A

(2n)
 are the natural frequency and corresponding eigenvectors of undamped 

system. The Eq. (18a) after substituting Eq. (16a) and Eq. (16c) becomes, 
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�Q(2n)-λA
2�I(2n)+J(2n)��φ

A

(2n)
 = 0                                  (18b) 

 

where λA is the eigenvalue for System-A. 

 

λA,i=
ωA,i

ω�A

=
TA

TA,i

                                                           (19) 

 

Here λA,i is the i-th natural frequency ratio and the corresponding eigenvector φ
A,i

(2n)
 satisfies the 

orthogonality condition of following equations, 

 

φ
A,i

�2n�T
Q(2n)φ

A,j

(2n)
 = δijλA,i

2
                                              (20a) 

 

φ
A,i

�2n�T�I(2n)+J(2n)�φ
A,j

(2n)
 = δij                                        (20b) 

 

In condition that the mass factors are equal to each other and zero, α = β = 0 , eigenvalues and 

eigenvectors of system-A can be calculated by using following equations after substituting 2n 

instead n of Eq. (7) and Eq. (8b), 

λA,i = 2sin � 2i-1

4×2n+2
π�                                                 (21) 

 

φ
A,i

(2n)
 ≡ 	�A,1,i,�A,2,i � ,�A,2n,i
T                                     (22a) 

 

�A,j,i = 
2√2×2n+1 sin � 2i-1

2×2n+1
jπ�                              (22b) 

 

By proportioning Eq. (19) and Eq. (21), the ratio between natural period of the vibration model, 

TA,i and of inter-story, TA can be expressed as follows, 

 
TA,i

TA

 = 
1

2
cosec� 2i-1

4×2n+2
π� , 1 ≤ i ≤ n                          (23) 

 

An approximate equation becomes as follows to obtain the first natural period of system-A on the 

basis of Eq. (23), when 1�n, 

TA,1 ≈ 
TA

π
�4n+1�                                                        (24) 

 

It can be estimated that the first natural period of vibration model is extended by increasing the 

number of storey n, for a given inter-story period T, which can be calculated by means of 

specified mass and spring coefficient value, by comparing the Eq. (10a) and Eq. (24). The natural 

period of the system-A is almost two times than of system-O, Eq. (25) as long as the inter-story 

periods are same of system-A and system-O. 

 

TA,1

T1
 ≈ 

TA

T ×
4n+1

2n+1
 ≈ 2

TA

T                                        (25) 
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4.3 Natural vibration mode characteristics 
 

Fig. 7 presents the relation of system-O and system-A between the natural periods, the 

first, second and third natural periods, and the number of storey n, obtained by using Eq. (4b), Eq. 

(18b) and Eq. (23). 

 

 
Fig. 7 The relation between natural period and storey number of undamped system-O and  

system-A 

 

The relation of the natural period and number of storey of system-A was presented in 

two conditions; (i) α = β = 0, that is, all masses are equal for each floor, and (ii) α = 2, β = 1, that 

is, the mass of beam-n is three times and the mass of beam-2n two times of floor masses. The 

natural period of the former condition is calculated by using Eq. (23) and the latter condition by 

using eigenvalue λA obtained from the numerical solution of Eq. (18b) and regulated by Eq. (20). 

In Fig. 7, the natural period of the system-A is obtained around two times longer than of system-

O. As for mass difference in condition that α = 2, β = 1, the difference is quite small in terms of 

natural periods. As expected, natural periods are increased as long as the number of story 

increases. 
 

Fig. 8 presents the first, second, third and fourth natural vibration modes of system-A 

obtained by using Eq. (22b) in condition that, α = β = 0 and n = 10. To make it easy to understand, 

the floors of the fixed sub-frame are represented by black dots, ● whereas the movable sub-frame 

floors are represented by white dots, ○. The natural vibration mode shapes are plotted for each 

mode as shown in Fig. 8. 

 
Fig. 8 Natural vibration modes of undamped system-A (α = β = 0, n =10)  0
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4.4 Viscous damping characteristics 
 

The proportion of viscous damping ratios of the vibration model ζc,i, and of inter-story ζc, 

becomes as in Eq. (26a) by using the eigenvector φA,i,and viscous damping ratio of system-A, 

due to orthogonality condition of Eq. (20a) and Eq. (20b) where the viscous damping ratio of 

inter-storey, 
 

                                            ζc,i 

                                                 = λA, i                                           (26a)                             

                                            ζc 

 

Taking the mass factors as α = β = 0, in Eq. (21), let us obtain the proportional damping ratios 

of ζc,i and ζc as follows, 

                                                             
                               ζc,i                2i-1 
                                                      =  2sin         π           (26b)       
                                                ζc               4  2n+2       
 

 

The approximate equation of the first natural damping constant can be estimated on the basis 

of the Eq. (26b) on condition that 1<< n,  

                                                                                
                                    π ζc                                                                      

                             ζc,1  ≈                           (27) 
                                    4n+1  
 

It is seen that, the storey number n, and viscous damping constant ζc,1 due to dashpots cA have 

an inverse proportion as long as ζc is specified. Proportioning the Eq. (13a) and Eq. (27) gives 

us the first viscous damping ratio equation of system-O and system-A. 

 
                ζc,1       ζc    2n+1     1    ζc 
                    ≈                   ≈                           (28)               
                ζ1         ζ    4n+1     2    ζ 
 

 
 

Fig. 9 Viscous damping constant – storey number relation between system-O and system-A 
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The viscous damping ratio of system-A becomes half of system-O for the same 

viscous damping ratio. Fig. 9 presents the relation between viscous damping ratio and 

number of storey n, for the first, second and third vibration modes, obtained by using Eq. (12) 

and Eq. (26b). 

The mass factor conditions, α and β, of system-A is identical to conditions of Fig. 7. 

Damping ratio of system-A is obtained 1/2 of system-O for the same viscous damping 

constant value. Besides, the viscous damping constant of system-A, in condition that α = 2,  

β = 1, differs a little in contrast in condition that α = β = 0 for n ≤ 10. But if the storey number 

increases, especially for n ≤ 10, the difference becomes smaller. 

 

5. FOLDED CANTILEVER SHEAR STRUCTURE WITH ADDITIONAL DAMPERS 

 

As mentioned before, it is possible to increase natural period by increasing flexibility 

of the structure but this causes extreme displacements. Therefore, additional viscous dampers 

attached between the beams of sub-frames in the horizontal direction at each floor to reduce 

inter-story drifts and to increase damping ratio as well. System-A, is investigated again with 

supplemental dampers, and the new system called from hereafter as system-AD. 

 

5.1 The equation of motion of damped proposed structure under base excitation 
 

The deformed frame and internal forces of system-AD due to base excitation are 

illustrated in Fig. 10. 

 

 
Fig. 10 Damped folded cantilever shear structure system-AD 

 

The additional viscous damper opposing beam Bi and B2n-i is removed and replaced by the 

Pi,2n-i vectors of viscous damping force. The equilibriums of the forces for these opposite 

beams, Bi and B2n-i become as follows, 

 

-Sm,i+Sc,i-Sc,i-1+Se,i-Se,i-1+Pi,j = 0,  1 ≤  i < n                                (29a) 

 

-Sm,j+Sc,j-Sc,j-1+Se,j-Se,j-1-Pi,j = 0,    j = 2n-1                                           
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and the equilibrium of the forces for beam Bn and B2n becomes as follows, 

 

-Sm,n+Sc,n-Sc,n-1+Se,n-Se,n-1 = 0                                         (29b) 

 

-Sm,2n-Sc,2n-1-Se,2n-1-P0,2n = 0                                                      

 

where, the viscous damping forces are , Pi,2n-i = d�x�2n-1-x� i�  and P0,2n = d�x�2n� . By 

substituting these equations of the forces into the Eq. (29a) and Eq. (29b) the equation of the 

motion of system-AD becomes, 

 

MA
(2n)

x� (2n)+�CA
(2n)

+D(2n)�x� (2n)+KA
(2n)

x(2n) = -z�MA
(2n)

p�2n�-fe2n�2n�sgn �x�2n�2n��           (30) 
 

here, D
(2n)

 is the damping matrix of the viscous damper d,  

 

D(2n) = dD0
(2n)

                                                   (31a) 

 

D0
(2n)

 = e2n
(2n)

e2n
(2n)T

+��ei�2n�,e2n-i�2n�� � 1 -1

-1 1
� 	ei(2n),e2n-i(2n)
T           (31b)n-1

i=1

 

 

5.2 Complex eigenvalue analysis 
 

System-AD becomes non-proportional damping vibration system due to sequence 

characteristics of matrix D0
(2n)

 of Eq. (31b), and eigenvector φ
A,i

�2n�
, cannot diagonalize the 

damping matrix CA
(2n)

+D(2n). Therefore, viscous damping ratio and complex eigenvalues of 

the non-proportional damping vibration system are obtained by using Foss Method [14]. If 

the coulomb friction force of roller bearings and damping matrix CA
(2n)

 of system-AD are 

neglected, the eigenproblem of the additional damped system becomes as follows, 

 �τ2MA
(2n)

+τD0
(2n)

+KA
(2n)�ψ = 0                              (32a) 

 

where τ  and ψ  are complex eigenfrequency and complex eigenvector of system-AD, 

respectively. When the Q
�2n�

, R
�2n�

and D0
�2n�

 matrices are substituted in Eq. (34a) the 

equation becomes, 

 �σ2�I�2n�+J�2n��+2σζ�dD�2n�
+Q

�2n��ψ                 �32b� 

 

here, σ and ζ�d are the complex eigenvalue and damping ratio, respectively. 

 

σ = 
τ

ω�A

                                                              (33) 

 

ζ�d = d

2�mAkA
                                                    (34) 
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Natural period Td,i and natural frequency ωd,i of the i-th eigenvector of system-AD can be 

estimated as in follows, 

 
Td,i

TA

 = 
ω�A

ωd,i

 = 
1|σi|                                               (35) 

 
the natural period and the natural frequency equations due to Eq. (19) and Eq. (35) becomes 

as follows for the system-AD with additional dampers d, 

 
Td,i

TA,i

 = 
ωA,i

ωd,i

 = 
λA,i|σi|                                              (36) 

 

and the viscous damping ratio ζd,i  of the i-th eigenvector due to viscous damper 

supplementation can be calculated by the following formula, 

 

ζd,i = 
-Re�σi�|σi|                                                        (37) 

 
Damping constant alterations of horizontally attached additional viscous dampers and 

vertically attached dashpots are illustrated in Fig. 11 obtained by Eq. (37) and Eq. (26b), 

respectively, in condition that α=β=0. Viscous damping constants of dashpots, ζ�c  and 

additional viscous dampers, ζ�d are specified as 0.3 and 0.01, respectively. 

  

 

 
 

Fig. 11 Comparison of damping constant of additional viscous dampers and dashpots 

 

By taking the first viscous damping constant of dashpot cA as 0.02 for the n=10 storey 

structure, the viscous damping ratio of additional dampers become around 0.26 from Eq. (27). 

First natural vibration mode, Fig. 11a, shows that the damping constant of horizontal dampers 

is increased in proportion to number of storey n, whereas the damping constant of dashpots is 

decreased. In spite of similar damping constant for n=6 number of storey, the damping 

constant alteration becomes remarkable, up to 30 times, as long as the number of storey 

increases. 
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Fig. 12 Alteration of natural periods due to additional viscous dampers 

 

Fig. 12 illustrates alteration of natural periods of first, second and third modes 

obtained using Eq. (36) due to additional viscous dampers. Calculation parameters are same 

with those of Fig. 11, except ζ�c which was set to 0. The change was remained within 2% for 

the first mode of natural period and 1% for the second mode of natural period. The alteration 

for third mode of natural period was obtained very small. From Fig. 12, the horizontal 

placement of additional dampers was obtained more effective than of vertically attached 

dashpots. Besides, the natural period of first mode alteration was remained almost same due 

to additional dampers, Fig. 12. Therefore the proposed structure, system-AD, let us to extend 

the natural period of ordinary structure 2 times by increasing floor number and attaching 

additional dampers between opposing beams of sub-frames. Finally, the corresponding 

viscous damping ratio of the i-th natural frequency of system-AD can be obtained by 

substituting the damping matrix CA
(2n)

 of additional dampers into Eq. (32a), the viscous 

damping ratio of system-A, 
 

ζAD,i ≈ ζA,i+ζd,i = ζc,i+ζf,i+ζd,i                                       (38) 

 

6. NUMERICAL ANALYSIS 
 

To examine the theory of proposed structure, a set of numerical analyses including 

eigenvalue and elastic dynamic response analyses were performed through three idealized 

models, OCSS, system-O, and FCSS without and with additional dampers, system-A and 

system-AD, respectively. System-O is the comparison model for FCSS models. Besides, it is 

aimed to examine behavioral differences between FCSS without and with additional damper 

systems. Table 1 summarizes the structural model parameters of spring-mass models of 

numerical analyses. All models are 15-storey with 50 m of height (each storey height is 3.33 

m). 
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Table 1. Spring-mass model parameters of numerical analyses. 
 

 

The given parameters are not consistent and were specified due to a chart presenting 

the observed natural periods of Steel and Reinforcement concrete buildings of mid-rise 

buildings around Japan [15]. Natural period of 50 m building was assumed around 1 sec, then 

specifying mass of floor let us estimated shear spring coefficients for ordinary buildings. 

For OCSS, columns are modeled as spring elements with 3.85x10
8
 N/m of shear spring 

coefficient, which was represented as k1, k2, ···, k14 and k15. The storey masses which were 

concentrated at the beams represented as m1, m2, ···, m14 and m15, and each of them were 

equaled to 100.000 kg that makes the total mass 1.500.000 kg. Damping coefficients of the 

dashpots, c1, c2, ···, c14 and c15, were set to 2.5x10
6
 Ns/m. 

FCSS models have the same height with OCSS model. The concentrated masses of 

the fixed shear sub-frame and movable shear sub-frames were represented as m1, m2, ··· m14, 

and m16, m17, ···, m29, m30, respectively. The mass of each beam at the fixed and movable sides 

were, m1~m14 and m16~m30, 50.000 kg. However the rigid connection beam, m15 was 100.000 

kg. The total mass of the FCSS models became 1.550.000 kg. The shear spring coefficients, 

k1~k15 and k16~k30, and the damping coefficients, c1~c15 and c16~c30, were set to 1.60x10
8
 N/m 

and 1.11x10
6
 Ns/m, respectively. Structural damping ratio was also taken 1% for the system-

A. System-AD is identical to system-A in terms of the structural height, structural damping 

ratio, masses, m1~m30, the spring coefficients, k1~k30, and the damping coefficients, c1~c30, 

except the additional viscous dampers with 0.25 x10
6
 Ns/m damping coefficients represented 

as d0~d14. 

 

6.1 Eigenvalue analysis 
 

The natural frequencies, damping ratios and complex eigenvalues were given in 

Table 2 obtained by using Foss Method. The first natural period of the ordinary building was 

obtained T1,O=0.99 sec, whereas the first natural periods of proposed building were obtained 

and T1,AD=2.10 sec. According to the Eq. (11) and Eq. (25), natural periods were obtained, 

T1,O=0.99 sec and T1,AD=2.19 sec, respectively for the given parameters of Table 1. That is, 

proposed model acquired two times of first natural period compared to ordinary structure, and 

both results showed good match with each other. In addition, although the structural damping 

Parameters 
Folded cantilever 

 shear structure(FCSS) 

Ordinary cantilever 

 shear structure(OCSS) 

Total height, H  50 m 50 m 

Number of stories, n 15 15 

Story height, h 3.333 m 3.333 m 

Story mass 

m1~m14=50,000 kg 

m1~ m30=100,000 kg m16~m29=50,000 kg 

m15, m30=100,000 kg 

Total mass, m 1,600,000 kg 1,500,000 kg 

Shear spring coefficient  k1~k30=1.60×10
8 
N/m k1~k15=3.85×10

8
 

Structural damping coefficient c1~c30=1.11×10
6 
Ns/m c1~c15=2.50×10

6 
Ns/m 

First structural damping ratio ζ1=1.0 % ζ1=2.0 % 

Additional damping coefficient d0~d6=0.25×10
6 
Ns/m - 

First additional damping ratio ⊿ζ1=34.0 % - 

Frictional coefficient µ=0.005 - 

Frictional force (N) f=41,650 N - 
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coefficient of the system-A is taken smaller than OCSS, the damping ratio was obtained 9% 

for FCSS without damper and 35% for FCSS with damper, whereas OCSS has 2% of 

damping ratio. Besides, the damping ratio of system-A, which has no additional dampers, 

was obtained 9%. 

 

Table 2.  Frequencies and complex eigenvalues and damping ratios of the OCSS and FCSS 

with additional dampers. 

 
OCSS FCSS with additional dampers 

First First Second Third 

Td (sec) 0.99 2.1 0.80 0.48 

ωd (rad/sec) 6.285 2.985 7.899 13.217 

ζ 0.020 0.350 0.358 0.249 

λR -0.128 -1.046 -2.825 -3.285 

λI ±6.284 ±2.796 ±7.377 ±12.802 

 

6.2 Elastic dynamic analysis 
 

The elastic dynamic response analysis was conducted to investigate the seismic 

behavior of the numerical models due to El Centro (1940), Taft (1952), Hachinohe (1968) 

and Miyagi (1978) earthquakes. Fig. 14 illustrates El Centro earthquake seismic wave, and 

acceleration and displacement responses of system-O and AD. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 El Centro earthquake, (a) seismic wave; (b) dynamic responses of FCSS with damper 

and OCSS. 
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The results shows that, the acceleration and displacement responses, with respect to base, of 

ordinary structure reduced up to 69% and 39%, respectively by proposed building. That is, 

structural responses can be mitigated properly by proposed structure compared to same height 

of ordinary building. 

 
 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 14 Shear force responses of numerical vibration models due to seismic loads. 

 

Shear force and acceleration responses were obtained maximum for ordinary 

building, then system-A and system-AD in decreasing response order, Fig. 14. Remarkably, 

displacements of system-A was relatively high. Therefore, it should be reduced by additional 

damper devices, and a further study about placement of these devices can be conducted on 

the base of methods which was mentioned in introduction section. 
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Fig. 15 Shear force responses of numerical vibration models due to earthquake waves. 

 

Fig. 15 summarizes the building models responses under four earthquake waves. As 

expected, acceleration and base shear responses were highly reduced in case of proposed 

building. However, the displacement responses of proposed building without additional 

dampers with respect to base were higher compared to both ordinary building and proposed 

building with additional dampers.  

 

7. CONCLUSION 

 
In this paper, the newly designed folded cantilever shear structure was investigated 

theoretically and numerically with the aim of increasing the natural period and damping ratio 

to reduce seismic responses. For this purpose, a new seismic isolation approach was proposed 

incorporating base isolation system and coupling method into a mid-rise structure. 

A new configuration for buildings of similar heights has been studied by connecting them at 

the roof part. The boundary conditions were selected to be one fixed supported building and 

the other one to be base isolated building while using rigid connection element at the top part. 

Based on the results, it is found that, 

 

1. Coupling method was effective to incorporate base isolated and fixed supported frames in 

a building of similar heights by means of rigid connection sub-frame at the top part.  

2. Proposed building is capable of extending the natural period two times compared to 

ordinary structure, which has the same number of storey, by increasing floor number two 

times without changing neither the total height of structure nor the number of storey. 
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3. The relative displacements with respect to the base of the proposed structure were 

relatively higher compared to ordinary building. Therefore, additional viscous dampers 

attached between sub-frames, and proposed structure with additional viscous dampers 

resulted in satisfying seismic performance. 

4. These damping devices can be easily removed or added to the building between the sub-

frames, and since these sub-frames can move toward each other or away from each other, 

it is an effective way placing damper devices in horizontal direction for increasing 

damping ratio. 
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