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Abstract: Numerical study is performed to investigate thermal wave propagation in a very thin film subjected to an asymmetrical 
temperature change on both sides. The non-Fourier, hyperbolic heat conduction equation is solved using a numerical technique based 
on MacCormak’s predictor-corrector scheme. Consideration is given to the time history of thermal wave behavior before and after 
asymmetrical collision of wave fronts from two sides of a film. It is disclosed that in transient heat conduction, a heat pulse is 
transported as a wave in the film, and that non-Fourier heat conduction is extremely significant with certain range of film thickness and 
time. That is, sudden heating on both sides of the extremely thin film causes temperature overshoot within a very short period of time.  
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Nomenclature 

C  Speed of thermal wave (m/s) 
cp  Specific heat  
k  Thermal conductivity (w/Km) 
Q() Dimensionless heat flux 
q() Heat flux (W/m2) 
T() Temperature (K) 
T0  Reference temperature (K) 
t  Time (sec.) 
x  Space variable 
x0  Film thickness (m) 

Greek Letters 

  Thermal diffusivity (m2/s) 
  Dimensionless space variable 
) Dimensionless temperature 
  Dimensionless time variable 
  Density (kg/m3) 
  Relaxation time (/C2, sec.) 

Subscript 

n     Time level 

Superscript 

i     Spatial location 
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1. Introduction 

Recently, several issues of basic scientific interest 

arise in cases such as laser penetration and welding, 

explosive bonding, electrical discharge machining, and 

heating and cooling of micro-electronic elements 

involving a duration time of nanosecond or even 

picosecond in which energy is absorbed within a 

distance of microns from the surface. In studying such 

phenomena, the classical Fourier heat conduction 

equation breaks down at temperatures near absolute 

zero or at moderate temperatures when the elapsed time 

during a transient is extremely short. This is because 

the wave nature of thermal propagation is dominant, 

that is, a thermal disturbance travels in the medium 

with a finite speed of propagation [1-4].   

The above phenomena are physically anomalous and 

can be remedied through the introduction of a 

hyperbolic equation based on a relaxation model for 

heat conduction which accounts for a finite thermal 

propagation speed. Thus, considerable interest has 

been generated toward the hyperbolic heat conduction 

(HHC) equation and its potential applications in 

engineering and technology. A comprehensive survey 
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of the relevant literature is available in Ref. [5]. Some 

dealt with wave characteristics and finite propagation 

speed in transient heat transfer conduction [3, 6-9]. 

Several analytical and numerical solutions of the HHC 

equation have been presented in the literature. In 

studying the propagation of temperature pulse in a 

semi-infinite medium, Baumeister and Hamill [1] used 

Laplace transforms to solve the HHC equation. The 

same method was employed by Maurer and Thompson 

[10], who reported the importance of the wave effect in 

response to a high heat flux irradiation. Carey and Tsai 

[11] analyzed a propagating heat wave reflected at a 

boundary, in which the numerical methods based on a 

variable formulation of the problem and the Galerkin 

finite-element method are employed. Vick et al. [12] 

and Ozisik et al. [13] predicted the growth and decay of 

a thermal pulse in one-dimensional solid. In particular, 

Ozisik et al. [13] used integral transforms to study the 

effect of pulses. Glass et al. [14] employed a numerical 

technique based on MacCormack’s predictor-corrector 

scheme to solve the HHC equation. By using the same 

method, Glass et al. [15, 16] analyzed numerically 

hyperbolic heat conduction in a semi-infinite slab with 

temperature-dependent thermal conductivity and 

investigated the effects of Stefan number, melt 

temperature, and variable thermal conductivity. As the 

other method, Frankel et al. [17] developed a general 

three-dimensional constant property heat flux 

formulation based on the hyperbolic heat conduction 

approximation. They reported that the flux-formulation 

is more convenient to solve problems involving 

flux-specified boundary conditions. Tan and Yang [18] 

investigated heat transfer resulting from symmetrical 

collision of thermal waves induced by a step change in 

the wall temperature of the thin film by means of the 

method of separation of variables. They obtained 

theoretical results for the time history of propagation 

process, magnitude and shape of thermal waves and the 

range of film thickness and duration time. By using the 

same method, Tan and Yang [19] predicted wave 

nature of heat propagation in a very thin film subjected 

to an asymmetrical temperature change on both sides. 

It was found that: (1) when a thin film is heated on both 

side walls, temperature overshoot occurs within a very 

short period of time; and (2) in contrast, when it is 

cooled, temperature undershoot occurs. Furthermore, 

Tan and Yang [20] treated heat propagation in a very 

film subjected to an exponentially decaying temperature 

change on both sides. They reported that both 

temperature overshoot and temperature undershoot 

occur in the films within a very short period of time.  

This paper treats the wave behavior during transient 

heat conduction in a very thin film (solid plate) 

subjected to an asymmetrical temperature change on 

both side surfaces. Analytical solutions are obtained by 

means of a numerical technique based on 

MacCormak’s predictor-corrector scheme to solve the 

non-Fourier, hyperbolic heat conduction equation.   

2. Formulation and Numerical Method 

Consider a very thin film with thickness of x0 

maintained at a uniform, initial temperature T0. The 

walls at x = 0 and x0 are suddenly heated or cooled to a 

temperature Tw1 and Tw2, respectively. In the present 

study, there is no heat generation in a film. 

Nonequilibrium convection and radiation are assumed 

negligible. Under the conditions and assumption, the 

modified Fourier equation [5] and the energy equation 

can be represented in the one-dimensional flow of heat, 

as 
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respectively. Note that the relaxation time  is assumed 

constant. For convenience in analysis and computation, 

the initial and boundary conditions to be imposed here 

are given for heating case, as 

T = T0, 0



x

T
   at t=0, 0<x<x0     

T = Tw1 (= 1.5T0)   at t > 0, x = 0     
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T = Tw2 (= 2.0T0)   at t > 0, x = x0 

The following dimensionless quantities, i.e., 

dimensionless temperature, dimensionless heat flux, 

and dimensionless time and space variables are 

introduced 
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Eqs. (1) and (2) can be expressed in terms of the 

above dimensionless variables as 
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Note that in the present study, Eqs. (4) and (5) are 

employed as the governing equations. Initial and 

boundary conditions are represented for wall-heating 

and -cooling, respectively, as 

 = 1, Q = 0  　  at = 0, 0<  <1 ,    

 = 1.5,    　  at > 0, = 0,    

 = 2.0,     　  at > 0,   

Note that the boundary condition of Q at  > 0 is 

derived from Eqs. (4) and (5). 

In general, many investigators combine the energy 

and flux equations (i.e., Eqs. (4) and (5)) into a single 

second-order partial differential equation to solve the 

HHC problem. As for this solution method, Glass et al. 

[6, 14] reported that MacCormack’s method (Anderson 

et al., 1983), which is a second-order accurate explicit 

scheme, can handle these moving discontinuities quite 

well and is valid for the HHC problems. Since the 

hyperbolic problems considered here have step 

discontinuities at the thermal wave front, 

MacCormack’s prediction-correction scheme can be 

used in the present study. When the HHC problem is 

numerically solved through the scheme employed here, 

it is convenient to solve Eqs. (4) and (5) rather than to 

combine these two equations into a single second-order 

partial differential equation before solving [14].   

Throughout numerical calculations, the number of 

grids is properly selected between 1,000 and 5,000 to 

obtain a grid-independent solution, resulting in no 

appreciable difference between the numerical results 

with different grid spacing. In solving the governing 

equations employed here, i.e., the HHC problem 

including the nonlinear nature, the stability is affected 

by the ratio ofto  which is called the 

Courant number [16]. For example, as the Courant 

number becomes smaller, the effect of odd derivative 

truncation-error terms becomes larger, and oscillations 

occur in the vicinity of discontinuities in the solution. 

Thus,is fixed at 0.98 in the present study. The 

ranges of the parameters are nondimensional plate 

thickness Cx0/2 = 0.5 and 5.   

3. Numerical Results and Discussion 

Figs. 1 and 2 illustrate the timewise variation of the 

temperature distribution, , in films having Cx0/2 of 

0.5 and 5, respectively. (a) in both figures corresponds 

to numerical predictions resulting from heating a film 

at both side surfaces. In particular, Fig. 1 depicts, in 

detail, the propagation process of thermal waves in a 

film with the value of Cx0/2 of 0.5. It is observed in 

Fig. 1 that: (1) sharp wavefronts exist in the thermal 

wave propagation, which is the same as the other wave 

phenomena, (2) after the wall temperatures on two 

sides are suddenly raised, a set of wavefronts appears 

and advances towards the center in the physical domain 

which separates the heat-affected zone from the 

thermally undisturbed zone, as seen in Fig. 1a, (3) at  
= 0.5, thermal wavefronts meet and collide with each 

other at the center of the film, (4) after first collision, 

the center temperature in a film, for the case of heating, 

causes a significant amplification resulting a much 

higher temperature in this region, (5) after that, reverse 

thermal wavefronts take place and travel towards both 
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(c)                                             (d) 
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Fig. 1  Instantaneous dimensionless temperature distribution in the film at Cx
0
/=1 with an asymmetrical temperature change.  
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Fig. 2  Instantaneous dimensionless temperature distribution in the film at Cx

0
/= 10 with an asymmetrical temperature change.  
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side walls of the  film, as shown  in Figs. 1b, (6) when 

thermal wavefronts reach at both side walls at  = 1.0, 

the film temperatures at both sides of strongly heated 

walls exceed the imposed wall temperature, called 

temperature overshoot, and (7) after thermal 

wavefronts are reflected from both side walls of the 

film, the similar pattern is continued as seen in Fig. 

1cthrough Fig. 1e. By several times of collision, 

reflection and continuous attenuation of the thermal 

waves, the wavefronts become weak. The thermal 

wave behavior was also predicted by Tan and Yang 

[17], who obtained the theoretical results by solving the 

hyperbolic heat conduction equation by means of the 

method of separation of variables.   

The present numerical solution predicts the 

existence of thermal waves, particularly in a very thin 

film and presents the propagation process of thermal 

waves, the magnitude and shape of thermal waves, and 

the regular decaying process of thermal wave in films 

with different values of Cx0/2. Such behavior is 

characteristic of a thermal system with a relaxation or 

nonlinear diffusion theory. It is found from Figs. 1 and 

2 that as time progresses, the peak of the wave decays 

and disappears within  = 10 for any films with 

different thickness. One observes that after wavefronts 

arrive at the center of the film with Cx0/2 = 5, they 

gradually disappear in the absence of reverse 

temperature waves and temperature overshoot or 

temperature undershoot, as seen in Fig. 2. It behaves 

like diffusion domination. A very interesting 

phenomenon of temperature overshoot or temperature 

undershoot occurs in the very thin film, i.e., in the film 

of smaller values of Cx0/2over a very short period of 

time, which is induced by the collision of the wave 

fronts. Such wave behavior can’t be predicted by the 

classical heat conduction theory, i.e., Fourier’s law. 

This is because it allows for the immediate diffusion of 

heat as soon as the energy is released in the absence of 

a relaxation time, that is, heat propagates at an infinite 

speed. Thus, the presence of the thermal relaxation 

time yields non-Fourier effect and this trend becomes 

more significant when the relaxation time is longer.  

For example, larger reverse waves can be seen in a film 

with Cx0/2 = 0.5, with the temperature greatly 

exceeding the imposed wall temperatures of the film, 

as shown in Fig. 1.   

It is found from the results that the thermal 

relaxation time plays a primary role in distinguishing a 

domain to be wave dominating or diffusion dominating. 

Several investigators have estimated the magnitude of 

thermal relaxation time  to range from 10-10 second for 

gases at standard conditions to 10-14 second for metals 

[14] with that for liquids [21] and insulators [22], 

falling within this range. If  is known, one can obtain 

the range of film thickness within which heat 

propagates as a wave. The criterion for thermal wave 

dominating in the present study is Cx0/ < 10, as seen 

in Figs. 1 and 2. For example, the value of silicon 

corresponds to the thickness of the film in the order of 

about 0.01 micron using 10-14 s and 93.4 × 10-6 m2/s as 

the relaxation time and thermal diffusivity [23], 

respectively. 

4. Summary 

Heat waves have been theoretically studied in a very 

thin film subjected to a sudden asymmetric temperature 

change at two side walls. The non-Fourier, hyperbolic 

heat conduction equation is solved using a numerical 

technique based on MacCormak’s predictor-corrector 

scheme. Results have been obtained for the 

propagation process, magnitude and shape of thermal 

waves and the range of film thickness and duration 

time within which heat propagates as wave. 

It is revealed that only when C is of the same order 

as or larger than one half the film thickness, thermal 

waves can appear. As the value of x0/2C become 

smaller, the temperature is substantially pronounced, as 

seen in Fig. 1. The criterion for the occurrence of 

thermal shock waves in a thin film is the film thickness 

in the order of 0.01 micron for metals. If a film is 

strongly heated, temperature overshoot may take place 

in the films of smaller values of x0/2C within a very 
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short period of time, respectively.  
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