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Abstract. A k x u) matrix M = [d;;] with entries from a group U of order u
is called a (u, k, \)-difference matrix over U if the list of quotients digdjg_l, 1<
¢ < uA, contains each element of U exactly A times for all ¢ # j. D. Jungnickel
has shown that & < uX and it is conjectured that the equality holds only if U
is a p-group for a prime p. On the other hand, A. Winterhof has shown that
some known results on the non-existence of (u,ul, A)-difference matrices are
extended to (u,uX — 1, \)-difference matrices. This fact suggests us that there
is a close connection between these two cases. In this article we show that any
(u, uX — 1, M)-difference matrix over an abelian p-group can be extended to a
(u, uX, \)-difference matrix.
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1 Introduction

Definition 1.1. Let U be a group of order v and k, \ positive integers. In
this article, we often identify a subset S of U with the group ring element
Yowes® € Z[U]. A k x uX matrix M = [d;;] with entries from U is called a
(u, k, \)-difference matrix over U ( for short, a (u, k, A\)-DM over U ) if

dindes '+t diandeun” =AU

for any i, ¢ with 1 <i # ¢ < k. M is said to be maximal if it cannot be extended
to a (u,k + 1, A)-DM over U. In this case we call dy; := uX — k the deficiency
of M.

If there exists a (u,k, \)-DM, then k& < wX by D. Jungnickel [4]. If the
equality holds, the matrix is called a GH(u, A) matrix (a generalized Hadamard
matrix). In Section 2 we will see that there exists a maximal difference matrix
with the deficiency 2. However, no example of a maximal difference matrix with
the deficiency 1 is known as far as the author knows. As we will see in Section
2 there is no maximal (u, k, \)-DM M satisfying dp; = 1 when u < 12.



We are interested in the following problem.

Problem. Given a group U of order u and an integer A > 0, what can we say
about k for which a maximal (u, k, \)-DM over U exists ?

In this article we study the case that dy; = 1 and show the following.

Theorem 4.1. Let G be an abelian group of order ¢ = p™ with p a prime. Then
every (q,qgA — 1, A)-DM over G can be extended to a GH(u, \) matrix over G.

Our result is best possible since there exist maximal (4,2,1)- and (4,6, 2)-
difference matrices (see Table 1 in Section 2).

2 Examples of maximal difference matrices

Example 2.1. (Drake [2]) Let G = {g1 = 1,--- , g2,} be a group of order 2n
with a cyclic Sylow 2-subgroup. If 2 4 A, then the following is a unique maximal
(2n,2,1)-DM over G up to equivalence for the difference matrices.
T T O |
M =
2” gl PR gl PR ... gzn PR g2n

We now give an infinite family of maximal difference matrices over the ad-
ditive group of GF(p").

Proposition 2.2. Let p be a prime with p™ 1 A and let L be the multiplication
table of K = GF(p"). Set J = Jx(=(1,---,1) € K*). Then M = L® J is a
mazimal (p",p", \)-DM over (K, +)(=~ Zy) with dpr = (A —1)p™.

Proof. Set K = {ko(=0),k1,ko, -+ ,ks}, s =p™ — 1. Then the following is a
(p™,p"™, A)-DM over (K, +).

kokod kokiJ - koksJ
b= | Bl i
kekod kskiJ -+ ksksJ
We note that each entry of Oth, --- , (A — 1)th column of M is 0, and each ith

column with A <i < Ap™ — 1 contains any element of K exactly one time.

Assume that we can obtain (p",p" + 1,X)-DM M = [m;;](0 <i < s+ 1,0 <
j < p"A—1) by adding the s + 1 (= p™)-th row, say w to M. Let w =
(Mst1,0, Mt 1,1, Mst1pra—1) and a = #{i [ mgp1; =0, 0<i < A—1}
We count N = #{(¢,7) | mij = msy1,;,0<i<s, 0<j<p*A—1}in two
ways. Then we have ap™ + (p"A — ) -1 = A\p” as Mis a (p™, p"™ + 1, A)-DM.
Thus ap™ = A, contrary to p™ { A. O

Example 2.3. The following is a maximal (4, 6,2)-DM over U = {0, a, b, ¢} ~
ZQXZQWithdMZQZ



0O 00O 0O 0 O00DO0
0O a 0 a b c ¢ b
M = 0 b a c 0 b ca . The set of the first four rows of M
0 ¢ca b b a 0 ¢
0 0 b b c¢c ¢ a a
0 0 ¢c ¢c a a b b

forms a subgroup of the direct product group U®. Hence we can easily verify
that M = [m,;] is a (4,6,2)-DM. Assume that M can be extended to (4,7,2)-
DM by adding a row say (di,ds,--- ,ds) to M. As [{(4,7) |dj —mi; = di}| >
6+1-(8—1)=13>6-2, we have a contradiction. Thus M is maximal.

By a computer search we obtain the following table of k£ for which there exists
a maximal (u, k, \)-DM over an abelian group U of order u with 2 < uX < 12.

Table 1

u U X k] u u U A k uA
2 7 1 2 2 8 Zs ! 2 8
3 22 T 3 3 8 | ZaxZaxZo | 1 48 3
4 Z3 1 2 4 9 Zo ! 3 9
4 9 Zs3 X Z3 1 1,6 9

4| ZaxZs | 1 4 4
3 Zs 3 9 9

2 72 2 1 1
= = = = = 10 Z10 1 2 10
5 25 3 5 5 5 Zs 2 | 4,5,6,10 | 10
3 22 2| 36 | 6 2 L2 5 2 10
5 Z3 i > 5 11 Z11 1| 345,11 | 11
- ZG 57T 12 Z12 1 2 12
17 X7Z i T S 12 | Zo xZ2 xZ3 | 1 | 34,5,6 | 12
S 2 ~ 4 T 5 S 2 Za 6 4,12 12
5 ZS i 1 S 3 Zs 4| 69,12 | 12
1 Zi 5 1 3 4 Zg X Ly 3| 456,12 | 12
1 Z4 3 2 12
1| Zax2Zy | 2 | 468 | 8 5 Z, 5T 156 D

From the table, it is conceivable that dj; > 2 except for GH matrices.

On the other hand, the following two results suggest us that there is a close
connection between (u,uX — 1, \)-DMs and (u, u\, A)-DMs.

Result 2.4. (W. de Launey [5]) Assume that 2 + u) and there exists a
(u,uA, A)-DM over G. Let p be a prime divisor of u and m a divisor of the
square free part of A. Then Ord,(m) =1 (mod 2).

Result 2.5. (A. Winterhof [8]) Assume that 2 uX and there exists a (u, uX —
1,A)-DM over G. Let p be a prime divisor of u and m a divisor of the square
free part of A. Then Ord,(m) =1 (mod 2).

From these facts, we would like to propose the following conjecture.

Conjecture. Any (u,ur — 1,A)-DM over a group U can be extended to a
(u, uA, X\)-DM over U (i.e. a GH(u, \) matrix).



3 An extension of near BH matrices

Concerning the above conjecture we prove that it is true under the condition
that the corresponding group is an abelian p-group in Section 4 (Theorem 4.1).
To show this we use the following well known result on characters.

Result 3.1. (Fourier inversion formula, see [7]) Let G be the set of characters

of an abelian group G and let f = Z agg € C[G]. Then,
geG

) 1 1
0 = > x(f)x(g™") and

xeé

Xo(f)

(ii) if x(f) =0 for anyxe@,x;«éx(),thenf: C]

Z g, where xq is the

geG
principal character of G.

Assume that a (u,uX — 1,\)-DM N over abelian group G of order u is
extended to a GH(u, \) matrix over G, say M = [m;;] (m;; € G). Let x # xo be
any character of G and define u\ x uA matrix x (M) over C by x (M) = [x(m;)].
Let s be the exponent of G. Then x(m;;) € ((s), where (s is a primitive sth
root of unity. As mi,lmg’l’l o miuxmewn”t = AG, for any i, £ with i # ¢,
X(M) satisfies the following.

X(M)x(M)*=mI (I =1I,, m=ul). (1)
Similarly, x(N) is an (m — 1) x m matrix satisfying
X(N)X(N)* = mlp 1. (2)
A matrix with the property (1) is defined in [1].

Definition 3.2. A matrix B = [b;;] of degree m is called a Butson Hadamard
matrix BH(m, s) if b;; € ((s) for all ¢, j and B satisfies BB* = m1I,y,.

In this article we define a matrix with the property (2) as follows.

Definition 3.3. We call an (m — 1) x m matrix A = [a;;] a near Butson
Hadamard matriz and denote it by NBH(m, s) if m > 3, a;; € ((s) and A
satisfies AA* = ml,,_1.

The conjecture mentioned in Section 2 gives rise to the following problem of
the extension of a NBH(m, s) to a BH(m, s).
Problem. Can a NBH(m, s) be extended to a BH(m, s) ?

Concerning this we show that a NBH(m,s) can be extended a BH(m,s)
under the condition that m is a power of a prime.



Proposition 3.4. Let p be a prime and set § = (pn. Let A = [v;;] be a

NBH(m,p") matriz such that vi1 = va1 = -+ = Uyp—1,1 = 1 and m > 3. Set
v; = (Vi1, Vi) (1 <i<m—1). Then,
i) plm,

(i) Setv = (m,0,---,0) — (v1 + -+ 4+ Vm—1). Then each entry of v is an
element of (). In particular, each column sum of A ism—1 or an element

of —(0), and

(iii) Let A be a matriz of degree m adding v to A as a row. Then A is a
BH(m,p"™) matriz.

To show the proposition we use the following lemma.

Lemma 3.5. Let p be a prime and set 8 = (pn. Forag, - ,apn_1 € Q, assume
that () agp+a10+- -+ apn_lﬁp"_l = 0. Then,

"1 and

(i) a; = a; wheneveri=j (mod p

(i) if ao, -+ apn_1 € Z, then Y o) 1 Apr-154¢ =0 (mod p) for any fized
twith0<t<pr—t—1.

Proof. The cyclotomic polynomial ®,n(x) = w}fz,f_ll is a minimal polynomial

1 n—1

of  over Q. As ®n(z) = =P (=2 g g 1,

n—1 n—1

n—1

pp—1)p

Hence

e(pfl)p"71+t — _9(p72)p"71+t o epn’lqtt _ 91& (O <t< pnfl _ 1) (4)

n_ -1 n—1_1 n—1_
Asag+ a1l 4 +apn 167 =3P 0N T apn-1440P 5T we have

pn—l_l ) p—2p"71—1 L
" —1)+t mThsHt
E apn—l(p,1)+t0p (p—1) + E E apn715+t9p =0. (5)
P s=0 t=0

Substituting (4) into (5) we have

n—171 p72

n—1
s+t
(apn—lert — apw,—l(p71)+t)9p =0.
t=0 s

I
<

By the minimality of (3) we have ayn-1,44 = apn-1(p—1)4¢ for any s,t with
0<s<p—2and 0 <t <p" ' —1 Hence apn—1(p_1)pt = Gpn-1(p_oy4t = = =
apn-1.14¢ = a¢ for any ¢ with 0 <t < p"~1 — 1. Thus the lemma holds. O



Proof of Proposition 3.4

Set I = {0,1,---,p" —1}. As m —1 > 2, we can consider a multiset S =
{01021, V12022, -+ , VimV2m }- Let ¢;(> 0) be the number of % contained in S
for i € I. As v;73% =0, Yier ¢;0" = 0 and > ic1 ¢i = m. Therefore p | m by
(ii) of Lemma 3.5.

As v = (m,0,---,0) — (v + -+ vyp_1), v-v; = m —v; -v; = 0. Hence
v L vy, -+, vm—1. On the other hand, setting ay =), ;c,,_1 Vit (2 <t <m),
we have v1 + - +vp—1 = (m— Liag, -+ ;o) and so v = (1, —ag, -+, —auy).
From this, 0 = (v1 + -+ + Upm—1,v) = m — 1 — @@ — -+ — @ Q4y,. Thus
0+ -+ 0, = m—1. Let ay; (0 < j < p™—1) be the number of the value
67 contained in the multiset {v1¢,v2¢, ,Um—1,t}. AS r = D1 cjcpnq Vits it

follows that

2 ™1
ar=apo+ a0+ ar 20”4+ -+ appn 167

ato+ary + -+ appn_1 =m-—1 (6)
As oo = E aijaikﬂjfk = E ( E ai7k+raivk)9’“, we have
jkel rel kel

Z ( Z Zai7k+,«ai7k)ﬂr =m-1 (7)

rel 2<i<m kel

We note that the alddition of indices is computed modulo p™. Comparing the
coefficients of #**" " (0 < s <p—1) in (7) and applying Lemma 3.5(i), we have

Z (%2,0 +oe a?,p"—l) —(m—1)

2<i<m

= Z Z Qi jgspr—1 Qi (1< Vs <p—1).

2<i<m 0<k<pm—1

From this, Z Z (@i grspr-t — aik)® = 2(m — 1). We note that
2<i<m  0<k<pn—1
Z (ai7k+sp7L—1 — ai7k)2 Z 2 by (6) Thus Z (ai’k+8pn—1 — ai,k)Q =2
0<k<pn—1 0<k<pn—1
for i with 2 < i < m — 1. It follows that, for each i, there exists a unique ¢
(0 < ¢ <pr~ ! —1) such that

{ai,kv A fotspn—1y *°° a‘Z‘,k‘Jr(pfl)sp"*l}
{coy -+, ¢, co—1} ifk=Clandp>2
=<q{ce, -+, co, o1} fk=landp=2
{cky -+, ik, ck} otherwise

as multisets.

Hence, for each 4, there exists d; > 0 such that



Q; = a0+ CLZ'710 + ai’292 + -4 ai_’pn,lﬁp -1=

{—edi ifp>2

+0%  if p=2.
We note that +64 = —%+2""" when p = 2. Hence, in this case we rewrite
64+2""" as §%. Thus we have v = (1, —ag, -+, —ay,) = (1,0%,--- %) and

so the proposition holds.

By Proposition 3.4, we have

Theorem 3.6. Let g = p™ with p a prime. Then every NBH(m, q) matriz can
be extended to a BH(m,q) matriz.

We now prove our main theorem.

4 An extension to GH matrices

Let G be an abelian group. For an element f = > _.a,z € Z[G], we set
fEY = ¥ cgazz~!. Moreover, we set G = Yowcc® € Z|G] and R =
Z[G]/Z[@] For u = (u1, - ,uUm), v = (v1,---,vm) € R™, (u;,v; € R) we
define the product of v and v in the following way :

w-v=uv Y 4+ upu, Y (e R).

Let g; and h; be elements of G for ¢,j € {1,2,---m}. Then, forv = (g1, -+, gm)
andw:(hla"' ah’m)
vilwin R < gihi '+ +gnhm ' = (m/|G))G.

We now prove the following.

Theorem 4.1. Let G be an abelian group of order ¢ = p™ with p a prime.
Then every (q,g\— 1, A)-DM over G can be extended to a GH(u, \) matriz over
G.

To prove the theorem it suffices to show the following.

Proposition 4.2. Let G be an abelian group of order ¢ = p™ with p a prime
and M = [gi;] a (q,g\ — 1,X)-DM over G such that g;1 =1 for each i :

1 gi2 gi,m
M=t g2 @R where m= g
1 gm-12 - Gm-1,m
Define gm; (1 <j<m) by
m—1 m—1
gmlz]-a g7n2:)\szgi2a Tty gmm:AG*Zgzm
=1 =1

Then the following holds.
(i) gm; € G.

(i) M = [gijli<ij<m is a GH(q, \) matriz over G.



Proof of Proposition 4.2
Set R = Z[G]/Z|G] and m = g\. We identify the ith row v; of M with an
element of R™. By definition of a difference matrix

v;-v; =0 (i #j) and v; - v; =m. Set v=(m,0,---,0) — (vi + -+ Vyp_1).
Thenv-v;=m—v;-v; =0 (1 <i<m—1) and so v L v;. Hence,

setting I = {1,--- ,m — 1}, we have v = (1, =,/ gi, - , — D_ics Yim)
and v L v; +vo+ -+ Vpo1. Set zj = > ;615 (5= 2,---,m). Then
v=(1,-22,,—zm)and 0 =v- (vy 4+ FVm_1) =m—1— (2020 +... &

ZmZm V). Therefore
20200 4oz 2 D = — 1 in R

Let p® be the exponent of G and set G = {hg, -+ , hg—1}. Let {x0, X1, - s Xq-1}

be the set of characters of G. Fix z; (2 < j < m—1) and consider each character

Xu 7 Xo of G. Clearly x,, (M) is a NBH(m, p¢) matrix and each entry of its first

column is 1. Applying Proposition 3.4, x,(z;) = —0%, for some i, € NU {0}.

Set zj = aohg + -+ + aq71hq,1 (ao, < ,aq—1 €NU {0}) Then
ap+ar+---+a—1 =m—1and

xo(ho)  xo(h1) -+ xo(hg-1) % m ;ill
xi(ho)  xa(h) - xa(hg-1) S A
Xq-1(ho)  Xq-1(h1) -+ Xxq-1(hg-1) aq._1 _gia

Hence a; = (1/g)(m — 1 — (x1(hi)0" + -+ + xq—1(hs)0"1)). As m = g},
a; =X — (L4 x1(hs)0™ + -+ + xq—1(hi)0%a~1)/q. From this, we have either

(1) X = - = X )0+ = Lo

(2) 1+ x1(ha)0™ + - + xg—1(hs)0'-1 = 0.

If (1) occurs, then x4 (h;) = 0% (1 < s < g—1) and a; = A—1. If (2) occurs, then
clearly a; = A. On the other hand, Zo<i<q—1 a; = m — 1 =g\ — 1. Therefore,

as a multiset, {ag, a1, -+ ,a,-1} = {A—1,\,--+ , A}. Thus there exists a unique
r; such that 4 ' '
Xl(hrj) = 97’17 X?(h’rj) = 91’27 T an—l(h’Tj) = 't by (1)

Hence xu(z;) = —0" = —xu(hy,) for any u # 0. It follows that x(z;+h,,) =0
for any u # 0 and so z; + h,; = c¢G for some ¢ by Result 3.1. In particular,
c =m/q = X\ Hence z; = \G — h,, for each j € {2,--- ,m}. Thus v =
(1, =AG+hyy, -+ ,—AG+h,,,) Therefore (1, hpy, -+ by, ) Loy (1<t <m—1)
holds.

O

We would like to raise the following question.

Question. Can an (u,ul—1,A)-DM over G be extended to a GH(u, A) matrix
even if G is a non-abelian p-group ?



In the rest of this section, we give an application to difference matrices of
coset type.

Definition 4.3. ([6], [3]) Let H be a (u, k, A\)-DM over a group U of order w.
Let R be the set of rows of H. We regard R as a subset of the direct product
group U"*. We say H is of coset type with respect to a row w # (1,---,1) of
Hifrwe Rforal reR.

Remark 4.4. We note that the (p™, p™, \)-DM over the additive group of K in
Proposition 2.2 is of coset type with respect to any row except for the first one.

We prove the following as an application of Theorem 4.1.

Corollary 4.5. Let p be a prime and let H be a (p,pA — p; \)-DM of coset type
over a group U = {(a) of order p with respect to a row of H. If A\ > 3, then H
can be extended to a GH(p, \) matriz of coset type over U.

To show the corollary, we use the following result [3].

Result 4.6. ([3]) Let p be a prime and k an integer with & > p. Let H be a
(p, k, A)-DM of coset type over a group U = (a) of order p with respect to a row of
H. Then p | X and there exist p normalized (p, k/p, \/p)-DMs Hy, H1, ..., Hp_1
over U such that H is equivalent to the following standard form.

(Ho, Hy,...,Hp 1)
(Ho, Hy,...,Hyp—1)w
M([H(),Hl,...,Hp_l],w) = .

where w = (J, Ja,...,Ja?~Y) ¢ UP J=(1,...,1) € U*.

Proof of Corollary 4.5

By assumption pA — p > p. Hence, applying Result 4.6, we have p | A and
there exist p normalized (p, A — 1, \/p)-DMs Hy, Hu, ..., H,_1 over U such that
H is equivalent to the following standard form :

M= M([H07H17 ey Hp,1]7w).

By Theorem 4.1, each H; can be extended to a GH(p, A/p) matrix, say L;.
Hence we obtain a GH(p, A) matrix L = M ([Lg, L1, ..., Ly_1],w). Clearly L is
an extension of M and of coset type with respect to w.

Remark 4.7. In the proof of Proposition 2.2, assume n = 1, A = 2 and p > 2.
Then M is a (p,2p — p, 2)-DM of coset type by Remark 4.4. But, it can not be
extended to a GH(p, 2) by Proposition 2.2.
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