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Abstract. A k × uλ matrix M = [dij ] with entries from a group U of order u
is called a (u, k, λ)-difference matrix over U if the list of quotients diℓdjℓ

−1, 1 ≤
ℓ ≤ uλ, contains each element of U exactly λ times for all i ̸= j. D. Jungnickel
has shown that k ≤ uλ and it is conjectured that the equality holds only if U
is a p-group for a prime p. On the other hand, A. Winterhof has shown that
some known results on the non-existence of (u, uλ, λ)-difference matrices are
extended to (u, uλ − 1, λ)-difference matrices. This fact suggests us that there
is a close connection between these two cases. In this article we show that any
(u, uλ − 1, λ)-difference matrix over an abelian p-group can be extended to a
(u, uλ, λ)-difference matrix.
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1 Introduction

Definition 1.1. Let U be a group of order u and k, λ positive integers. In
this article, we often identify a subset S of U with the group ring element∑

x∈S x ∈ Z[U ]. A k × uλ matrix M = [dij ] with entries from U is called a
(u, k, λ)-difference matrix over U ( for short, a (u, k, λ)-DM over U ) if

di,1dℓ,1
−1 + · · · + di,uλdℓ, uλ

−1 = λU

for any i, ℓ with 1 ≤ i ̸= ℓ ≤ k. M is said to be maximal if it cannot be extended
to a (u, k + 1, λ)-DM over U . In this case we call dM := uλ − k the deficiency
of M .

If there exists a (u, k, λ)-DM, then k ≤ uλ by D. Jungnickel [4]. If the
equality holds, the matrix is called a GH(u, λ) matrix (a generalized Hadamard
matrix). In Section 2 we will see that there exists a maximal difference matrix
with the deficiency 2. However, no example of a maximal difference matrix with
the deficiency 1 is known as far as the author knows. As we will see in Section
2 there is no maximal (u, k, λ)-DM M satisfying dM = 1 when uλ ≤ 12.
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We are interested in the following problem.

Problem. Given a group U of order u and an integer λ > 0, what can we say
about k for which a maximal (u, k, λ)-DM over U exists ?

In this article we study the case that dM = 1 and show the following.

Theorem 4.1. Let G be an abelian group of order q = pn with p a prime. Then
every (q, qλ − 1, λ)-DM over G can be extended to a GH(u, λ) matrix over G.

Our result is best possible since there exist maximal (4, 2, 1)- and (4, 6, 2)-
difference matrices (see Table 1 in Section 2).

2 Examples of maximal difference matrices

Example 2.1. (Drake [2]) Let G = {g1 = 1, · · · , g2n} be a group of order 2n
with a cyclic Sylow 2-subgroup. If 2 - λ, then the following is a unique maximal
(2n, 2, λ)-DM over G up to equivalence for the difference matrices.

M2n =
[

1 · · · 1 · · · · · · 1 · · · 1
g1 · · · g1 · · · · · · g2n · · · g2n

]
We now give an infinite family of maximal difference matrices over the ad-

ditive group of GF (pn).

Proposition 2.2. Let p be a prime with pn - λ and let L be the multiplication
table of K = GF (pn). Set J = Jλ(= (1, · · · , 1) ∈ Kλ). Then M = L ⊗ J is a
maximal (pn, pn, λ)-DM over (K, +)(≃ Zn

p ) with dM = (λ − 1)pn.

Proof. Set K = {k0(= 0), k1, k2, · · · , ks}, s = pn − 1. Then the following is a
(pn, pn, λ)-DM over (K, +).

M =


k0k0J k0k1J · · · k0ksJ
k1k0J k1k1J · · · k1ksJ
· · · · · · · · · · · ·

ksk0J ksk1J · · · ksksJ


We note that each entry of 0th, · · · , (λ − 1)th column of M is 0, and each ith
column with λ ≤ i ≤ λpn − 1 contains any element of K exactly one time.
Assume that we can obtain (pn, pn + 1, λ)-DM M̂ = [mij ](0 ≤ i ≤ s + 1, 0 ≤
j ≤ pnλ − 1) by adding the s + 1 (= pn)-th row, say w to M . Let w =
(ms+1,0,ms+1,1, · · · ,ms+1,pnλ−1) and a = #{i | ms+1,i = 0, 0 ≤ i ≤ λ − 1}.
We count N = #{(i, j) | mi,j = ms+1,j , 0 ≤ i ≤ s, 0 ≤ j ≤ pnλ − 1} in two
ways. Then we have apn + (pnλ − λ) · 1 = λpn as M̂ is a (pn, pn + 1, λ)-DM.
Thus apn = λ, contrary to pn - λ.

Example 2.3. The following is a maximal (4, 6, 2)-DM over U = {0, a, b, c} ≃
Z2 × Z2 with dM = 2 :
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M =


0 0 0 0 0 0 0 0
0 a 0 a b c c b
0 b a c 0 b c a
0 c a b b a 0 c
0 0 b b c c a a
0 0 c c a a b b

. The set of the first four rows of M

forms a subgroup of the direct product group U8. Hence we can easily verify
that M = [mij ] is a (4, 6, 2)-DM. Assume that M can be extended to (4, 7, 2)-
DM by adding a row say (d1, d2, · · · , d8) to M . As |{(i, j) |dj − mij = d1}| ≥
6 + 1 · (8 − 1) = 13 > 6 · 2, we have a contradiction. Thus M is maximal.

By a computer search we obtain the following table of k for which there exists
a maximal (u, k, λ)-DM over an abelian group U of order u with 2 ≤ uλ ≤ 12.

Table 1

u U λ k uλ
2 Z2 1 2 2
3 Z3 1 3 3
4 Z4 1 2 4
4 Z2 × Z2 1 4 4
2 Z2 2 4 4
5 Z5 1 5 5
2 Z2 3 2 6
3 Z3 2 3,6 6
6 Z6 1 2 6
7 Z7 1 3,7 7
8 Z2 × Z4 1 4 8
8 Z8 1 2 8
2 Z2 4 4 8
4 Z4 2 4 8
4 Z2 × Z2 2 4,6,8 8

u U λ k uλ
8 Z8 1 2 8
8 Z2 × Z2 × Z2 1 4,8 8
9 Z9 1 3 9
9 Z3 × Z3 1 4,6 9
3 Z3 3 9 9
10 Z10 1 2 10
5 Z5 2 4,5,6,10 10
2 Z2 5 2 10
11 Z11 1 3,4,5,11 11
12 Z12 1 2 12
12 Z2 × Z2 × Z3 1 3,4,5,6 12
2 Z2 6 4,12 12
3 Z3 4 6,9,12 12
4 Z2 × Z2 3 4,5,6,12 12
4 Z4 3 2 12
6 Z6 2 4,5,6 12

From the table, it is conceivable that dM ≥ 2 except for GH matrices.

On the other hand, the following two results suggest us that there is a close
connection between (u, uλ − 1, λ)-DMs and (u, uλ, λ)-DMs.

Result 2.4. (W. de Launey [5]) Assume that 2 - uλ and there exists a
(u, uλ, λ)-DM over G. Let p be a prime divisor of u and m a divisor of the
square free part of λ. Then Ordp(m) ≡ 1 (mod 2).

Result 2.5. (A. Winterhof [8]) Assume that 2 - uλ and there exists a (u, uλ−
1, λ)-DM over G. Let p be a prime divisor of u and m a divisor of the square
free part of λ. Then Ordp(m) ≡ 1 (mod 2).

From these facts, we would like to propose the following conjecture.

Conjecture. Any (u, uλ − 1, λ)-DM over a group U can be extended to a
(u, uλ, λ)-DM over U (i.e. a GH(u, λ) matrix).
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3 An extension of near BH matrices

Concerning the above conjecture we prove that it is true under the condition
that the corresponding group is an abelian p-group in Section 4 (Theorem 4.1).
To show this we use the following well known result on characters.

Result 3.1. (Fourier inversion formula, see [7]) Let Ĝ be the set of characters
of an abelian group G and let f =

∑
g∈G

agg ∈ C[G]. Then,

(i) ag =
1
|G|

∑
χ∈Ĝ

χ(f)χ(g−1) and

(ii) if χ(f) = 0 for any χ ∈ Ĝ, χ ̸= χ0, then f =
χ0(f)
|G|

∑
g∈G

g, where χ0 is the

principal character of G.

Assume that a (u, uλ − 1, λ)-DM N over abelian group G of order u is
extended to a GH(u, λ) matrix over G, say M = [mij ] (mij ∈ G). Let χ ̸= χ0 be
any character of G and define uλ×uλ matrix χ(M) over C by χ(M) = [ χ(mij)].
Let s be the exponent of G. Then χ(mij) ∈ ⟨ζs⟩, where ζs is a primitive sth
root of unity. As mi,1mℓ,1

−1 + · · ·+mi,uλmℓ,uλ
−1 = λG, for any i, ℓ with i ̸= ℓ,

χ(M) satisfies the following.

χ(M)χ(M)∗ = mI (I = Im, m = uλ). (1)

Similarly, χ(N) is an (m − 1) × m matrix satisfying

χ(N)χ(N)∗ = mIm−1. (2)

A matrix with the property (1) is defined in [1].

Definition 3.2. A matrix B = [bij ] of degree m is called a Butson Hadamard
matrix BH(m, s) if bij ∈ ⟨ζs⟩ for all i, j and B satisfies BB∗ = mIm.

In this article we define a matrix with the property (2) as follows.

Definition 3.3. We call an (m − 1) × m matrix A = [aij ] a near Butson
Hadamard matrix and denote it by NBH(m, s) if m ≥ 3, aij ∈ ⟨ζs⟩ and A
satisfies AA∗ = mIm−1.

The conjecture mentioned in Section 2 gives rise to the following problem of
the extension of a NBH(m, s) to a BH(m, s).

Problem. Can a NBH(m, s) be extended to a BH(m, s) ?

Concerning this we show that a NBH(m, s) can be extended a BH(m, s)
under the condition that m is a power of a prime.
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Proposition 3.4. Let p be a prime and set θ = ζpn . Let A = [vij ] be a
NBH(m, pn) matrix such that v11 = v21 = · · · = vm−1,1 = 1 and m ≥ 3. Set
vi = (vi1, · · · , vim) (1 ≤ i ≤ m − 1). Then,

(i) p | m,

(ii) Set v = (m, 0, · · · , 0) − (v1 + · · · + vm−1). Then each entry of v is an
element of ⟨θ⟩. In particular, each column sum of A is m−1 or an element
of −⟨θ⟩, and

(iii) Let Ã be a matrix of degree m adding v to A as a row. Then Ã is a
BH(m, pn) matrix.

To show the proposition we use the following lemma.

Lemma 3.5. Let p be a prime and set θ = ζpn . For a0, · · · , apn−1 ∈ Q, assume
that (∗) a0 + a1θ + · · · + apn−1θ

pn−1 = 0. Then,

(i) ai = aj whenever i ≡ j (mod pn−1) and

(ii) if a0, · · · , apn−1 ∈ Z, then
∑

0≤s≤p−1 apn−1s+t ≡ 0 (mod p) for any fixed
t with 0 ≤ t ≤ pn−1 − 1.

Proof. The cyclotomic polynomial Φpn(x) = xpn
−1

xpn−1−1
is a minimal polynomial

of θ over Q. As Φpn(x) = x(p−1)pn−1
+ x(p−2)pn−1

+ · · · + xpn−1
+ 1,

θ(p−1)pn−1
+ θ(p−2)pn−1

+ · · · + θpn−1
+ 1 = 0. (3)

Hence

θ(p−1)pn−1+t = −θ(p−2)pn−1+t − · · · − θpn−1+t − θt (0 ≤ t ≤ pn−1 − 1). (4)

As a0 + a1θ + · · · + apn−1θ
pn−1 =

∑p−1
s=0

∑pn−1−1
t=0 apn−1s+tθ

pn−1s+t, we have

pn−1−1∑
t=0

apn−1(p−1)+tθ
pn−1(p−1)+t +

p−2∑
s=0

pn−1−1∑
t=0

apn−1s+tθ
pn−1s+t = 0. (5)

Substituting (4) into (5) we have

pn−1−1∑
t=0

p−2∑
s=0

(apn−1s+t − apn−1(p−1)+t)θpn−1s+t = 0.

By the minimality of (3) we have apn−1s+t = apn−1(p−1)+t for any s, t with
0 ≤ s ≤ p− 2 and 0 ≤ t ≤ pn−1 − 1. Hence apn−1(p−1)+t = apn−1(p−2)+t = · · · =
apn−1·1+t = at for any t with 0 ≤ t ≤ pn−1 − 1. Thus the lemma holds.
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Proof of Proposition 3.4

Set I = {0, 1, · · · , pn − 1}. As m − 1 ≥ 2, we can consider a multiset S =
{v11v21, v12v22, · · · , v1mv2m}. Let ci(≥ 0) be the number of θi contained in S
for i ∈ I. As v1v2

T = 0,
∑

i∈I ciθ
i = 0 and

∑
i∈I ci = m. Therefore p | m by

(ii) of Lemma 3.5.
As v = (m, 0, · · · , 0) − (v1 + · · · + vm−1), v · vi = m − vi · vi = 0. Hence
v ⊥ v1, · · · , vm−1. On the other hand, setting αt =

∑
1≤i≤m−1 vit (2 ≤ t ≤ m),

we have v1 + · · · + vm−1 = (m − 1, α2, · · · , αm) and so v = (1,−α2, · · · ,−αm).
From this, 0 = (v1 + · · · + vm−1, v) = m − 1 − α2α2 − · · · − αmαm. Thus
α2α2 + · · ·+αmαm = m−1. Let atj (0 ≤ j ≤ pn−1) be the number of the value
θj contained in the multiset {v1,t, v2,t, · · · , vm−1,t}. As αt =

∑
1≤i≤m−1 vit, it

follows that

αt = at,0 + at,1θ + at,2θ
2 + · · · + at,pn−1θ

pn−1

at,0 + at,1 + · · · + at,pn−1 = m − 1 (6)

As αiαi =
∑

j,k∈I

aijaikθj−k =
∑
r∈I

( ∑
k∈I

ai,k+rai,k

)
θr, we have

∑
r∈I

( ∑
2≤i≤m

∑
k∈I

ai,k+rai,k

)
θr = m − 1 (7)

We note that the addition of indices is computed modulo pn. Comparing the
coefficients of θspn−1

(0 ≤ s ≤ p− 1) in (7) and applying Lemma 3.5(i), we have∑
2≤i≤m

(a2
i,0 + · · · + a2

i,pn−1) − (m − 1)

=
∑

2≤i≤m

∑
0≤k≤pn−1

ai,k+spn−1 ai,k (1 ≤ ∀s ≤ p − 1).

From this,
∑

2≤i≤m

∑
0≤k≤pn−1

(ai,k+spn−1 − ai,k)2 = 2(m − 1). We note that∑
0≤k≤pn−1

(ai,k+spn−1 − ai,k)2 ≥ 2 by (6). Thus
∑

0≤k≤pn−1

(ai,k+spn−1 − ai,k)2 = 2

for i with 2 ≤ i ≤ m − 1. It follows that, for each i, there exists a unique ℓ
(0 ≤ ℓ ≤ pn−1 − 1) such that

{ai,k, ai,k+spn−1 , · · · , ai,k+(p−1)spn−1}

=


{cℓ, · · · , cℓ, cℓ − 1} if k = ℓ and p > 2
{cℓ, · · · , cℓ, cℓ ± 1} if k = ℓ and p = 2
{ck, · · · , ck, ck} otherwise

as multisets.
Hence, for each i, there exists di ≥ 0 such that
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αi = ai,0 + ai,1θ + ai,2θ
2 + · · · + ai,pn−1θ

pn−1 =

{
−θdi if p > 2
±θdi if p = 2.

We note that +θdi = −θdi+2n−1
when p = 2. Hence, in this case we rewrite

θdi+2n−1
as θdi . Thus we have v = (1,−α2, · · · ,−αm) = (1, θd2 , · · · , θdm) and

so the proposition holds.

By Proposition 3.4, we have

Theorem 3.6. Let q = pn with p a prime. Then every NBH(m, q) matrix can
be extended to a BH(m, q) matrix.

We now prove our main theorem.

4 An extension to GH matrices

Let G be an abelian group. For an element f =
∑

x∈G ax x ∈ Z[G], we set
f (−1) =

∑
x∈G ax x−1. Moreover, we set Ĝ =

∑
x∈G x ∈ Z[G] and R =

Z[G]/Z[Ĝ]. For u = (u1, · · · , um), v = (v1, · · · , vm) ∈ Rm, (ui, vj ∈ R) we
define the product of u and v in the following way :

u · v = u1v1
(−1) + · · · + umvm

(−1) (∈ R).

Let gi and hj be elements of G for i, j ∈ {1, 2, · · ·m}. Then, for v = (g1, · · · , gm)
and w = (h1, · · · , hm)

v ⊥ w in R ⇐⇒ g1h1
−1 + · · · + gmhm

−1 = (m/|G|)Ĝ.
We now prove the following.

Theorem 4.1. Let G be an abelian group of order q = pn with p a prime.
Then every (q, qλ− 1, λ)-DM over G can be extended to a GH(u, λ) matrix over
G.

To prove the theorem it suffices to show the following.

Proposition 4.2. Let G be an abelian group of order q = pn with p a prime
and M = [gij ] a (q, qλ − 1, λ)-DM over G such that gi1 = 1 for each i :

M =


1 g12 · · · g1,m

1 g22 · · · g2,m
·· · · · · · · · · ·
1 gm−1,2 · · · gm−1,m

, where m = qλ.

Define gmj (1 ≤ j ≤ m) by

gm1 = 1, gm2 = λG −
m−1∑
i=1

gi2, · · · , gmm = λG −
m−1∑
i=1

gim.

Then the following holds.

(i) gmj ∈ G.

(ii) M̃ = [gij ]1≤i,j≤m is a GH(q, λ) matrix over G.
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Proof of Proposition 4.2
Set R = Z[G]/Z[Ĝ] and m = qλ. We identify the ith row vi of M with an
element of Rm. By definition of a difference matrix

vi · vj = 0 (i ̸= j) and vi · vi = m. Set v = (m, 0, · · · , 0)− (v1 + · · ·+ vm−1).
Then v · vi = m − vi · vi = 0 (1 ≤ i ≤ m − 1) and so v ⊥ vi. Hence,
setting I = {1, · · · ,m − 1}, we have v = (1,−

∑
i∈I gi2, · · · ,−

∑
i∈I gim)

and v ⊥ v1 + v2 + · · · + vm−1. Set zj =
∑

i∈I gi,j (j = 2, · · · , m). Then
v = (1,−z2, · · · ,−zm) and 0 = v · (v1 + · · ·+ vm−1) = m− 1− (z2z2

(−1) + · · ·+
zmzm

(−1)). Therefore

z2z2
(−1) + · · · + zmzm

(−1) = m − 1 in R

Let pe be the exponent of G and set G = {h0, · · · , hq−1}. Let {χ0, χ1, · · · , χq−1}
be the set of characters of G. Fix zj (2 ≤ j ≤ m−1) and consider each character
χu ̸= χ0 of G. Clearly χu(M) is a NBH(m, pe) matrix and each entry of its first
column is 1. Applying Proposition 3.4, χu(zj) = −θiu , for some iu ∈ N ∪ {0}.
Set zj = a0h0 + · · · + aq−1hq−1 (a0, · · · , aq−1 ∈ N ∪ {0}). Then

a0 + a1 + · · · + aq−1 = m − 1 and
χ0(h0) χ0(h1) · · · χ0(hq−1)
χ1(h0) χ1(h1) · · · χ1(hq−1)
· · · · · · · · · · · ·

χq−1(h0) χq−1(h1) · · · χq−1(hq−1)




a0

a1

...
aq−1

 =


m − 1
−θi1

...
−θiq−1


Hence ai = (1/q)(m − 1 − (χ1(hi)θi1 + · · · + χq−1(hi)θiq−1)). As m = qλ,
ai = λ − (1 + χ1(hi)θi1 + · · · + χq−1(hi)θiq−1)/q. From this, we have either

(1) χ1(hi)θi1 = · · · = χq−1(hi)θiq−1 = 1 or

(2) 1 + χ1(hi)θi1 + · · · + χq−1(hi)θiq−1 = 0.

If (1) occurs, then χs(hi) = θis (1 ≤ s ≤ q−1) and ai = λ−1. If (2) occurs, then
clearly ai = λ. On the other hand,

∑
0≤i≤q−1 ai = m − 1 = qλ − 1. Therefore,

as a multiset, {a0, a1, · · · , aq−1} = {λ−1, λ, · · · , λ}. Thus there exists a unique
rj such that

χ1(hrj ) = θi1 , χ2(hrj ) = θi2 , · · · , χq−1(hrj ) = θiq−1 by (1).
Hence χu(zj) = −θiu = −χu(hrj ) for any u ̸= 0. It follows that χu(zj +hrj ) = 0
for any u ̸= 0 and so zj + hrj = cĜ for some c by Result 3.1. In particular,
c = m/q = λ. Hence zj = λĜ − hrj for each j ∈ {2, · · · , m}. Thus v =
(1,−λĜ+hr2 , · · · ,−λĜ+hrm) Therefore (1, hr2 , · · · , hrm) ⊥ vt (1 ≤ t ≤ m−1)
holds.

�

We would like to raise the following question.
Question. Can an (u, uλ−1, λ)-DM over G be extended to a GH(u, λ) matrix
even if G is a non-abelian p-group ?
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In the rest of this section, we give an application to difference matrices of
coset type.

Definition 4.3. ([6], [3]) Let H be a (u, k, λ)-DM over a group U of order u.
Let R be the set of rows of H. We regard R as a subset of the direct product
group Uuλ. We say H is of coset type with respect to a row w ̸= (1, · · · , 1) of
H if rw ∈ R for all r ∈ R.

Remark 4.4. We note that the (pn, pn, λ)-DM over the additive group of K in
Proposition 2.2 is of coset type with respect to any row except for the first one.

We prove the following as an application of Theorem 4.1.

Corollary 4.5. Let p be a prime and let H be a (p, pλ− p;λ)-DM of coset type
over a group U = ⟨a⟩ of order p with respect to a row of H. If λ ≥ 3, then H
can be extended to a GH(p, λ) matrix of coset type over U .

To show the corollary, we use the following result [3].

Result 4.6. ([3]) Let p be a prime and k an integer with k > p. Let H be a
(p, k, λ)-DM of coset type over a group U = ⟨a⟩ of order p with respect to a row of
H. Then p | λ and there exist p normalized (p, k/p, λ/p)-DMs H0,H1, . . . ,Hp−1

over U such that H is equivalent to the following standard form.

M([H0,H1, . . . ,Hp−1], w) :=


(H0,H1, . . . ,Hp−1)
(H0,H1, . . . ,Hp−1)w

...
(H0,H1, . . . ,Hp−1)wp−1


where w = (J, Ja, . . . , Jap−1) ∈ Upλ, J = (1, . . . , 1) ∈ Uλ.

Proof of Corollary 4.5

By assumption pλ − p > p. Hence, applying Result 4.6, we have p | λ and
there exist p normalized (p, λ− 1, λ/p)-DMs H0,H1, . . . ,Hp−1 over U such that
H is equivalent to the following standard form :

M = M([H0, H1, . . . , Hp−1], w).
By Theorem 4.1, each Hi can be extended to a GH(p, λ/p) matrix, say Li.

Hence we obtain a GH(p, λ) matrix L = M([L0, L1, . . . , Lp−1], w). Clearly L is
an extension of M and of coset type with respect to w.

Remark 4.7. In the proof of Proposition 2.2, assume n = 1, λ = 2 and p > 2.
Then M is a (p, 2p − p, 2)-DM of coset type by Remark 4.4. But, it can not be
extended to a GH(p, 2) by Proposition 2.2.
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