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Abstract 

The mean binding energy and the fluctuation between the structural units in chalcogenide 

glassy systems are estimated by using the Bond Strength-Coordination Number Fluctuation 

(BSCNF) model. Chalcogenide glasses can be considered to be formed by an agglomeration 

of structural units. For this kind of glasses, the structural units are connected to each other by 

weak intermolecular forces. From the results obtained in the present study, it is suggested that 

the binding energy estimated by the BSCNF model corresponds to the intermolecular forces 

between the structural units. The analysis by the BSCNF model also suggests that the viscous 

flow or the structural relaxation results by breaking the weaker parts of the bonds in the 

intermolecular connections. This picture of the viscous flow is in agreement with the 

structural model of covalent glasses and the photoinduced properties in chalcogenide glasses 

proposed by other authors. 
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1. Introduction 

During the last decades, glassy chalcogenide semiconductors have attracted much interest 

for their technological applications such as optical fibers and other photo-related materials [1, 

2]. From a fundamental point of view, such kinds of materials have been studied extensively 

to verify the different theories. Among these, the bond constraint theory, originally proposed 

by Phillips [3] and further extended by others [4, 5], have provided a basis for understanding 

the composition dependence of the physical quantities, in particular, the transformations 

occurring at the average coordination number per atom, <r>=2.4 (floppy-rigid transition) [3, 4] 

and 2.67 (topological transition) [5]. Another example is the finding of a good correlation 

between the glass transition temperature Tg and the overall mean bond energy <E> for various 

kinds of chalcogenide glasses, which has been found by using the covalent bond approach 

proposed by Tichý and Tichá [6]. This approach has found a wide field of application in the 

study of chalcogenide glasses [7-9]. The theoretical methods mentioned above have provided 

insightful understanding on nanoscale phenomena that occur accompanied by the composition 

variation in chalcogenide glasses. It should be noted however, that although large number of 

studies have been performed focusing on the concept of ‘mean values’ of the physical 

quantities, less attention has been paid to the ‘fluctuation.’ 

In this paper, chalcogenide glassy materials are characterized from a chemical bond point 

of view. Specifically, it is shown that the mean binding energy and the fluctuation of the 

structural units in some chalcogenide glasses can be estimated by using the Bond Strength-

Coordination Number Fluctuation (BSCNF) model originally proposed by one of the authors 

[10]. The aims of the present study are to provide a method to estimate the values of the 

binding energy and the fluctuation between the structural units, and to gain a clue to 

understand the composition dependence of material properties in chalcogenide glasses. 
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2. The mean binding energy and the fluctuation between the structural 

units 

 

2.1. The BSCNF model and its application to chalcogenide systems 

The BSCNF model describes the temperature dependence of the viscosity in terms of the 

mean values of the bond strength E0, the coordination number Z0, and their fluctuations ∆E, 

∆Z, of the structural units that form the melt [10]. The BSCNF model is written as 
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Here, x is the inverse temperature normalized by Tg, x=Tg/T. η0 and η T g are the viscosities at 

the high temperature limit and at T g, respectively (η0 = 10-5 Pa   ·  s and η T g = 1012 Pa  ·   s). R is the 

gas constant. The BSCNF model was constructed by considering that the melt is formed by an 

agglomeration of structural units as shown in Fig. 1. The information on structural 

connectivity which is reflected in the medium range structure is also incorporated in the 

BSCNF model [10, 11]. 

In the analysis based on the BSCNF model, the glass forming materials are characterized 

with the quantities B and C defined above. The values of B and C are determined by fitting the 

experimental data of the viscosity. Intuitively, C gives the total mean binding energy per 

structural unit and B gives the degree of its fluctuations among the structural units against the 
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thermal disturbance at Tg, respectively. In the BSCNF model, the binding energy E and the 

coordination number Z of the structural units are introduced as independent parameters [10]. 

If a restricted type of material is considered, E and Z could be correlated. The relation reported 

by Tanaka [12], which is discussed later, is probably related with this observation. However, 

previous studies have revealed that the relation between E and Z in real systems does not 

show a monotonous variation [13]. Their relations depend on the nature of the bonding of the 

materials in consideration. 

Fig. 2 shows the relation between B and C in GexS1-x system (x=0.3-0.44). In the inset, 

the composition dependence of E0Z0 and Tg or T12 are shown, where T12 is the temperature 

defined at which the value of viscosity reaches η =1012 [Pa·s]. It has been reported that for this 

GexS1-x system, the composition dependence of the quantities such as Tg [14] and the amount 

of Ag that can be photodissolved [15], exhibit a maximum at the composition x = 1/3. Fig. 2 

indicates that the behavior of E0Z0 also shows a characteristic feature at the same composition. 

The result of GexS1-x shown in Fig. 2 will be considered later together with the ternary 

chalcogenide glasses. 

In the following, we will show that the mean binding energy E0Z0 and the fluctuation 

|∆E||∆Z| of the structural units can be estimated by using both, Tg and the determined 

parameters, B and C. 

 

2.2. A relation between the mean binding energy and Tg 

Tg is known as a quantity that is related with the rigidity of the network structure. The 

structural property of glassy materials is attributed to some microscopic factors such as the 

bond arrangements and the magnitude of bond strength between the atoms. Concerning this 

point, an interesting study has been reported by Tichý and Tichá [6]. They have shown that for 
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chalcogenide glasses, there exists a good correlation between Tg and the overall mean bond 

energy <E> calculated by the covalent bond approach. Specifically, it was shown that the 

equation given by Tg = 311(<E> - 0.9) reproduces successfully the relation between Tg and 

<E> for many kinds of chalcogenide glasses [6]. This relationship can be also written as 

 
.90003220 g .T.E +>≈<   

 
The units used in the above expression are <E> [eV] and Tg [K], respectively. Eq. (3) suggests 

that a relationship between E0Z0 and Tg could be derived in the light of the BSCNF model. 

In our previous study [16], it has been found that B and C are mutually connected 

through the expression given by 
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Here, γ gives the ratio of the normalized bond strength fluctuation to the coordination number 

fluctuation. In particular, it has been found that in the case of γ = 1, the behavior of the BSCNF 

model becomes identical to that of the well-known Vogel-Fulcher-Tammann equation [16]. 

The result of the analysis for many kinds of glassy materials [11, 16] has revealed that the 

value of B (fluctuation) increases with the decrease in the value of C (mean value). This 

behavior is described by Eq. (4), and can be understood as follows. The structural units of a 

glassy material characterized by large value of B and small value of C are loosely connected 

each other. In other word, the width of the distribution |∆E||∆Z| around the mean value E0Z0 

becomes wide. This indicates that structural relaxation occurs cooperatively, enrolling large 
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number of structural units. That is, the relaxation process occurs by breaking the weaker parts 

of the bonds in the intermolecular connections. On the other hand, in materials characterized 

by large value of C and small value of B, the relaxation of structural units is more localized. In 

terms of the fragility concept, these differences correspond to the relaxation occurring in 

fragile and strong systems, respectively. The mapping of different materials in the (B, C) plane 

supports this observation [11, 16].   

       In what follows, we discuss the connection between Eq. (3) and the BSCNF model. In the 

present study, we introduce the relation between E0Z0 and Tg as 
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This equation is derived from Eq. (4) by imposing γ = 1 and extracting the terms proportional 

to Tg. Here, _β is given by β = – |∆E||∆Z| ln(ηTg/η0). The magnitudes of the fluctuations, |∆E| and 

|∆Z|, are expected to be weakly dependent on the composition. In addition, the value of 

(1/2)ln(1-B), which appears in Eq. (4), is small for the chalcogenide glasses examined in this 

study. Therefore, we consider that β takes a constant value in the present study. 

 

 3. Results 

Fig. 3 shows the relation between E0Z0 and the characteristic temperatures Tg or T12 for 

(GeS2)x(Sb2S3)1-x (x=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 0.9), (GeSe2)x(Sb2Se3)1-x (x=0.4, 0.5, 0.6, 

0.7, 0.8), and GexS1-x (x=0.3-0.44). The experimental data of the viscosity and Tg or T12 for 

these materials are taken from the references [17], [18] and [14], respectively. The value of 

As2S3 is also indicated for comparison.  

_                                                            ,(6) 
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Fig. 4 shows the relation between E0Z0 and |∆E||∆Z| for the same glasses to those 

considered in Fig. 3. We can see that the mean binding energy decreases with the increase in 

the fluctuation. It should be noted however, that for the binary GexS1-x system, E0Z0 increases 

slightly up to x=0.32, and then decreases with the increase in the amount of Ge (x > 0.32). This 

trend is in accordance with the result of Fig. 3. The material trend for Ge-Sb-S systems, on the 

other hand, decreases with the increase in the fluctuation as a whole.  

 

4. Discussions 

From Fig. 3, we can see a material trend for the ternary systems, Ge-Sb-S(Se). That is, 

E0Z0 increases with the increase in Tg or T12. This compositional trend indicates that the 

binding energy becomes stronger with the increase of the amount of Ge. This behaviour is 

related with the increase of the average coordination number <r> with the concentration of Ge. 

According to the 8-N rule, the coordination numbers for the elements Ge, Sb, and S(Se) are 4, 

3, and 2, respectively. The broken lines indicated in Fig. 3 are drawn by using Eq. (6) with β = 

-1.01 and -1.53. The slopes of these lines are common and are given by R ln(ηTg/η0) ≈ 0.00337. 

It is interesting to note that this value is close to 0.00322, which is the value of the slope given 

in Eq. (3). 

Concerning the magnitudes of <E> and E0Z0, however, we should note that there is a 

large difference between them. For instance, according to the covalent bond approach, the 

mean overall bond energy <E> for As2S3 is calculated to be <E>_≈_2.4 [eV] [6]. This 

magnitude is comparable to the bond energy calculated from the Pauling relation [19-21]. On 

the other hand, the magnitude of E0Z0 for the same material is much smaller, E0Z0_≈_0.56 [eV]. 

It must be also noted that the term E0Z0 includes the effect of Z0. Then, what is the reason for 

the difference in the magnitudes between <E> an E0Z0? To which parts of the network 
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structure connectivity are these two bond energies related? A probable origin for this 

difference is the different types of bonds involved. The overall mean bond energy <E> 

corresponds to that determined by the short range structure [21], while E0Z0 corresponds to 

that involving the medium range structure [10]. For the sake of comparison, the values of the 

parameters for some materials are shown in Table 1. 

Tanaka [12] has proposed a structural model for covalent glasses. There, it has been 

discussed that chalcogenide glasses that follows an empirical relation lnTg ≈ 1.6 <r> +2.3, 

consist of molecules weakly bonded each other by van der Waals (VDW) forces. The 

magnitude of the VDW bonding is ~ 0.15 [eV], which is much weaker than the intramolecular 

bond energy [22]. From the point of view of the bonding nature, the activation energy for the 

viscosity Ea is given by [12] 

 

.1
0a

−><
≈

rnE ε  

 

_Here, _ε0_≈_0.15 [eV] is the typical value of the VDW type bonding per atom. _n<r>-1 gives the 

number of atoms belonging to the structural unit (n ≈ 5), and the exponent <r> - 1 reflects the 

dimensionality of the network connectivity within the glass. 

Meanwhile, according to the BSCNF model, the activation energy for the viscosity can 

be written as [11] 

 

,)( B00a NZEE =   

 

_where NB is the number of bonds that must be broken. Note that NB gives also the number of 

structural units involved in the cooperative rearrangements of the structure which occurs 

accompanying the thermally activated viscous flow. We note that the physical meanings of the 

parameters and the expressions given in Eqs. (7) and (8) are similar. For As2S3, the activation 

energy for the viscosity at Tg, is Ea = ln(10)mRTg [17] ≈ 3.4 [eV], where m is the fragility index, 

_                                                            ,(8) 

_                                                            ,(7) 
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m ≈ 39 [11]. Hence, by using Eq. (8), NB is estimated to be NB = 3.4 / 0.56 ≈ 6.1. If we assume 

that E0 is equal to ε0, it is possible to calculate the mean coordination number of the structural 

unit, Z0. For the case of As2S3, Z0 takes the value Z0 ≈ 1.56, if E0_≈_0.15 [eV] is adopted. 

Actually, this value could be small, but it can take Z0 ~ 2.0 depending on the values of other 

parameters such as n. It is conjectured that the quantity Z0 can be related directly with the 

topological factor or the network dimensionality of the glasses. For the glassy Se, for instance, 

the average coordination number per atom, <r> = 2, corresponds to the chain-like structure, 

and the network dimensionality is D = <r> - 1=1. Based on this point of view, the structure of 

As2S3 glass is considered to form a distorted-layer-like structure [5]. Thus, the mean value of 

Z0 ~ 2.0, which is smaller than <r> = 2.4, could be related with the connectivity of the structural 

units or the topological order, a characteristic that is reflected in the medium range structure. 

Furthermore, NB contains information on the number of structural units involved in the 

segmental motions. It includes distant structural units in addition to nearest neighbor 

structural units. At present, no direct experimental data such as Z0, ∆Z and NB are available to 

verify the quantities estimated by the model. Further study is necessary on this regard. To 

avoid misunderstanding, in the above discussion, it should be remembered that Z0 is a quantity 

related with the coordination between structural units, whereas <r> is a quantity related with 

the atomic mean coordination number. 

The dashed line in Fig. 4 is given by the relation, E0Z0= – ln(ηTg/η0)|∆E||∆Z| +1.38. This 

relation is the same to that of Eq. (6), but modified in such a way to check the relation 

between E0Z0 and |∆E||∆Z|. From Fig. 4, we can also note that the material trend of 

(GeSe2)x(Sb2Se3)1-x (x=0.4-0.8) follows the dashed line. On the other hand, in Ge-Sb-S and 

Ge-S systems, the points deviate from the dashed line. The reason for this deviation is due to 

the restriction of γ = 1 in the BSCNF model used in the present study. That is, in a real system, 
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it is expected that the normalized bond strength fluctuation is not equal to the normalized 

coordination number fluctuation, |∆E|/E0 ≠ |∆Z|/Z0. For the case of Cu-As-Se, we have shown 

previously that by taking into consideration the composition dependence, the relation |∆E|/E0 > 

|∆Z|/Z0 holds [13]. Analogously, for the present chalcogenide systems, |∆E|/E0 is larger than 

|∆Z|/Z0, because the deviation from the dashed line in Fig. 4 indicates γ > 1. These observations 

suggest the possibility that the inequality of the normalized fluctuations, i.e., |∆E|/E0 > |∆Z|/Z0, 

is a characteristic feature for the chalcogenide glassy semiconductors. 

It is well known that chalcogenide glasses such as As2S3 are sensitive to light 

illumination [23]. This fact indicates that in glassy chalcogenide materials having broad 

distribution of fluctuations in the bond strength, the weaker parts of bonds between the 

structural units are broken preferentially. This picture of weak bond disruption accompanied 

by the viscous flow is in agreement with the structural model of covalent glasses [12], and the 

model of photo-induced fluidity [22, 23]. For the later, the photo-excitation process is 

considered to trigger the slipping of molecular clusters [22].  

 

 5. Conclusions 

In the present study, it was shown that for the binary and ternary chalcogenide glasses, 

the mean binding energy E0Z0 and the fluctuation |∆E||∆Z| of the structural units can be 

estimated by using the BSCNF model. The relations betweens E0Z0 and Tg, and between E0Z0 

and |∆E||∆Z|, were discussed for these chalcogenide glassy materials. It was discussed that 

difference in the magnitudes between the overall bond energy <E> estimated by the covalent 

bond approach and E0Z0 is large. The difference arises from the different type of interactions 

operating at short range and medium range distances. The model indicates that the viscous 
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flow is caused by breaking the weaker parts of bonds involved in the intermolecular 

connections of the structural units. 
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Figure Captions 

Fig. 1._Schematic representation of the connectivity of the structural units. The small open 

and black circles represent atoms. Large circles represent the structural units [10]. 

 

Fig. 2. Relation between B and C for GexS1-x glasses. In the inset, the relations between E0Z0 

and x, and between Tg, T12, and x, are shown. It is observed that the composition dependence 

of E0Z0, Tg, and T12 change their trends at x=1/3. The experimental data are taken from ref. 

[14]. 

 

Fig. 3._Relation between E0Z0 and the characteristic temperatures Tg and T12. The materials 

investigated in this study are given in the inset of the figure. 

 

Fig. 4. Relation between the binding energy E0Z0 and the fluctuation |∆E||∆Z|. The symbols 

used are the same to those used in Fig. 3. 

 

 

 

Table Caption 

Table 1._Materials parameters for glassy Se, As2S3 and GeS2. Glass transition temperature Tg, 

average coordination number per atom <r> [5], overall mean bond energy evaluated by the 

covalent bond approach <E> [6], E0Z0 and |∆E||∆Z| estimated by the BSCNF model. 
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 Tg [K] <r>  <E> [eV] E0Z0 [eV] 
 

|∆E||∆Z| 
×10-2 [eV] 

 

Se  302 [24] 2  –  0.49 2.0 
As2S3  440 [12] _2.4 2.4 [6] 0.58 2.1 
GeS2  750 [12] 2.67 3.3 [6] 0.96 2.8 

        

 

Table 1 
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