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Abstract

Let D be an affine difference set of order n in an abelian group G
relative to a subgroup N . We denote by π(s) the set of primes divid-
ing an integer s(> 0) and set H∗ = H \ {ω}, where H = G/N and
ω =

∏
σ∈H σ. In this article, using D we define a map g from H to N

satisfying for τ, ρ ∈ H∗, g(τ) = g(ρ) iff {τ, τ−1} = {ρ, ρ−1} and show that
ordo(σ)(m)/ordo(g(σ))(m) ∈ {1, 2} for any σ ∈ H∗ and any integer m > 0
with π(m) ⊂ π(n). This result is a generalization of J.C. Galati’s theorem
on even order n ([3]) and gives a new proof of a result of Arasu-Pott on
the order of a multiplier modulo exp(H) ([1] Section 5).

Keywords: Relative difference set;Affine difference set;Multiplier

1 Introduction

Let G be an abelian group of order n2 − 1 (n > 1) and N a subgroup of G
of order n − 1. An n-subset D of G is called an affine difference set of order
n in G relative to N if each element x ∈ G \ N is uniquely represented in
the form d1d

−1
2 (d1, d2 ∈ D) and no nonidentity element in N is represented

in such a form (see [8]). Therefore, D is an affine difference set if and only if
DD(−1) = n + G − U in the group ring Z[G], where we identify a subset X of
G with a group ring element

∑
x∈X x ∈ Z[G] and set X(s) =

∑
x∈X xs for an

integer s. An integer m is called a multiplier of D if D(m) = Da for some a ∈ G.
An affine difference set of order n corresponds to a projective plane of order

n admitting a quasiregular collineation group and so it is conjectured that the
order n is a power of a prime ([8]).

If n is even, then as (n+1, n−1) = 1, N is a direct factor of G and G = Q×N
for a subgroup Q of G of order n+1. Using this fact J.C.Galati defined a map ϕ
from Q to N and showed that for any x ∈ Q and any numerical multiplier m of
D, ordo(x)(m) = ordo(ϕ(x))(m) or ordo(x)(m) = 2ordo(ϕ(x))(m) (see [3] Theorem
15).

On the other hand, if n is odd, then N is not a direct factor of G as a Sylow
2-subgroup of G is cyclic ([1]). We denote by π(s) the set of primes dividing
an integer s(> 0) and set H∗ = H \ {ω}, where H = G/N and ω =

∏
σ∈H σ.

In this article, using D we define a map g from H to N satisfying for τ, ρ ∈
H∗, g(τ) = g(ρ) iff {τ, τ−1} = {ρ, ρ−1} and show that for any σ ∈ H∗ and any
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integer m > 0 with π(m) ⊂ π(n), there exists an integer kσ,m ∈ {1, 2} such
that ordo(σ)(m) = kσ,mordo(g(σ))(m). This result is a generalization of a result
of Galati on even order n mentioned above. As an application we give a new
proof of a result of Arasu-Pott on multipliers m of D ([1] Section 5).

2 Preliminaries

In this section we give several results which will be needed later.

Result 2.1. (Arasu-Pott [1]) If an abelian group G contains an affine difference
set, then a 2-Sylow subgroup of G is cyclic.

For an integer s > 0, we denote by π(s) the set of primes dividing s.

Result 2.2. (A.J. Hoffman [4]) Let D be an affine difference set of order n in
an abelian group. Then, if an integer m(> 0) satisfies π(m) ⊂ π(n), then m is
a multiplier of D.

We denote by l.c.m.(S) the least common multiple of a set S(⊂ N).
We can easily check the following (see Theorem 1.3.1(iii) of [2]).

Lemma 2.3. Let G be an abelian group with generators g1, · · · , gm. Then
exp(G) = l.c.m.({o(gi) | 1 ≤ i ≤ m}), where o(gi) is the order of gi.

Let a, s ∈ N and (a, s) = 1. We denote by ords(a) the order of a (mod s).

Lemma 2.4. Let u, v and m be positive integers with (m,uv) = 1. Then,

ord l.c.m.(u,v)(m) = l.c.m.(ordu(m), ordv(m)).

Proof. Set a = ordu(m) and b = ordv(m). Then
(∗) u | ma − 1, u - mi − 1 (∀i < a), v | mb − 1, v - mj − 1 (∀j < b).
Clearly u, v | ml.c.m.(a,b) − 1 and so l.c.m.(u, v) | ml.c.m.(a,b) − 1. Hence
ord l.c.m.(u,v)(m) | l.c.m.(ordu(m), ordv(m)).

Set w = ord l.c.m.(u,v)(m). Then l.c.m.(u, v) | mw − 1 and so u | mw − 1 and
v | mw − 1. By (∗), w = sa, w = tb for some s, t ∈ N. Hence l.c.m.(a, b) | w =
ord l.c.m.(u,v)(m). Thus the lemma holds.

3 Abelian groups and group extensions

In this section we assume that H and N are abelian groups. A map c :
H ×H −→ N is called a factor set if the following conditions are satisfied.

c(σ, τ)c(στ, ρ) = c(σ, τρ)c(τ, ρ) (∀σ, τ, ρ ∈ H) (1)

∃k ∈ N, c(σ, 1) = c(1, τ) = k (∀σ, τ ∈ H) (2)

Remark 3.1. If we put z(σ, τ) = c(σ, τ)k−1, then z is a factor set in the usual
sense (see [5] page 86)
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The following holds.

Lemma 3.2. If a map c : H × H −→ N is a factor set, then c(σ, σ−1) =
c(σ−1, σ).

Proof. Put τ = σ−1, ρ = σ in (1) and use (2). Then, as N is abelian, we have
the lemma.

We can easily verify the following.

Lemma 3.3. Assume (1) and (2) and define a multiplication in Ĝ = H × N
by (σ, a)(τ, b) = (στ, c(σ, τ)ab).
Then the following holds.

(i) Ĝ is a group with identity (1, k−1).

(ii) (σ, a)−1 = (σ−1, c(σ, σ−1)−1a−1k−1)．

(iii) Set N̂ = {1} ×N . Then N̂ is a normal subgroup of Ĝ.

(iv) Ĝ is abelian if and only if c(σ, τ) = c(τ, σ) for all σ, τ ∈ H.

Lemma 3.4. Let N be a subgroup of an abelian group G and let S be a complete
set of coset representatives of H := G/N(= {Nx,Ny, · · · }). We define a map˜ from G to S by {x̃} = Nx∩S and a map c : H ×H −→ N by c(Nx,Ny) =

x̃ ỹ (x̃y)−1(∈ N). Then, c(∗, ∗) is a factor set with k = 1̃ in (2) and Ĝ defined
in Lemma 3.3 is isomorphic to G.

Proof. We define a map f : G −→ Ĝ by f(x) = (Nx, (x̃)−1x). Then, for each
x, y ∈ G,

f(x)f(y) = (Nx, (x̃)−1x)(Ny, (ỹ)−1y) = (Nxy, c(Nx,Ny)(x̃)−1x(ỹ)−1y)

= (Nxy, x̃ỹ(x̃y)−1(x̃)−1x(ỹ)−1y) = (Nxy, (x̃y)−1xy) = f(xy)

Hence f is a homomorphism. On the other hand, for x ∈ Ker(f), (Nx, (x̃)−1x) =
(N, k−1), where k = 1̃. From this we have x ∈ N and (x̃)−1x = k−1. The for-
mer implies x̃ = k. It follows that k−1x = k−1 and so x = 1. Hence f is a
monomorphism. As |G| = |Ĝ|, f is an isomorphism.

4 Affine Difference Sets

Throughout this section we assume that D is an affine difference set of order
n in an abelian group G relative to a subgroup N of G. Clearly Da is also an
affine difference set relative to N for each a ∈ G. Set H = G/N .

In the rest of the article, elements of G are denoted by small Roman letters
and elements of H by small Greek letters : G = {a, b, c, · · · }, H = {σ, τ, ρ, · · · }.
We use the following notations :

ω =
∏
σ∈H

σ, H∗ = H \ {ω}, w0 =
∏
x∈N

x (3)
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Lemma 4.1. Let ω and w0 be as defined in (3) and set ω = Nw for some
w ∈ G. Then the following hold.

(i) If 2 | n, then ω = 1 and w0 = 1. In particular, w ∈ N

(ii) If 2 - n, then ω ̸= 1, ω2 = 1 and w0 ̸= 1, w2
0 = 1. In particular, w ̸∈

N,w2 ∈ N .

Proof. It is well known that for any abelian group M .

∏
x∈M

x =

{
t if t is a unique involution in M ,

1 otherwise.

If 2 | n, then |N | ≡ |H| ≡ 1 (mod 2). On the other hand, if 2 - n, then
|N | ≡ |H| ≡ 0 (mod 2). By Result 2.1, the lemma holds.

Let ω(= Nw) be as in (3). We may assume that D∩Nw = ∅ by exchanging
D for its suitable translate if necessary. Then S = D ∪ {w} is a complete set of
coset representatives of G/N(= H).

Lemma 4.2. Exchanging D for its suitable translate Da (a ∈ N) if necessary,
we may assume that ∏

x∈D

x = 1. (4)

Proof. By Lemma 4.1, Nw = ω = (Nw)(
∏
x∈D

Nx). Hence
∏
x∈D

x ∈ N . Set

t =
∏
x∈D

x and D1 = Dt−1. Then t ∈ N and
∏

x∈Dt−1

x = (t−1)n
∏
x∈D

x =

(t−1)n−1 = 1. Thus the lemma holds.

Definition 4.3. Let d : H −→ G be a map defined by {d(ξ)} = Nx ∩ S for
ξ = Nx ∈ H. Clearly D = {d(ξ) | ξ ∈ H∗}.

Remark 4.4. If 2 | n, then we have d(1) ̸∈ D as ω = 1. On the other hand, if
2 - n, then d(1) ∈ D as ω ̸= 1.

Proposition 4.5. Let c be a map from H × H to N defined by c(σ, τ) =
d(σ)d(τ)d(στ)−1. Then the following hold.

(i) c(σ, 1) = c(1, σ) = d(1), c(σ, τ) = c(τ, σ)

(ii) Set Hσ = H \{ω, σ−1ω} (σ ̸= 1). Then a map c(σ, ∗) : Hσ −→ N defined
by ξ 7→ c(σ, ξ) is bijective.

Proof. (i) immediately follows from Lemmas 3.3 and 3.4. Let σ(∈ H \ {1}) and
assume c(σ, τ) = c(σ, ρ) for some τ, ρ ∈ Hσ (τ ̸= ρ). Then d(σ)d(τ)d(στ)−1 =
d(σ)d(ρ)d(σρ)−1. Hence d(τ)d(στ)−1 = d(ρ)d(σρ)−1. As τ, ρ, στ, σρ ̸= ω, we
have d(τ), d(στ), d(ρ), d(σρ) ∈ D. Thus either d(τ) = d(ρ) or d(τ) = d(στ),
which implies τ = ρ or σ = 1, a contradiction.
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We note that the converse of Proposition 4.5 is also true (cf. Theorem 4 of
[3]).

Proposition 4.6. Let G an abelian group of order n2 − 1 with a cyclic Sylow
2-subgroup and let N be a subgroup of G of order n− 1. Let H,ω and w0 be as
defined in Lemma 4.1. Let d1 be an injection from H∗(= H \ {ω}) to G and set
D = d1(H

∗). Set d1(ω) = w and Hσ = H \ {ω, σ−1ω} for σ ∈ H \ {1}. Assume
that the map d satisfies the following conditions.

(i) d1(H) is a complete set of coset representatives of G/N .

(ii) Let c : H ×H −→ N be a map defined by c(σ, τ) = d1(σ)d1(τ)d1(στ)
−1.

Then a map c(σ, ∗) : Hσ −→ N (ξ 7→ c(σ, ξ)) is bijective for every
σ ∈ H \ {1}.

Then D = {d1(σ) | σ ∈ H∗} is an affine difference set in G relative to N .

Proof. Let τ, ρ, ξ, η ∈ H∗. Then d1(τ), d1(ρ), d1(ξ), d1(η) ∈ D. Assume
d1(τ)d1(ρ)

−1 = d1(ξ)d1(η)
−1 and τ ̸= ρ. Set σ = (τρ−1)−1. Then σ ̸= 1. As

τρ−1 = ξη−1, ρ = στ, η = σξ. It follows that d1(τ)d1(στ)
−1 = d1(ξ)d1(σξ)

−1.
Hence d1(σ)d1(τ)d1(στ)

−1 = d1(σ)d1(ξ)d1(σξ)
−1. Thus c(σ, τ) = c(σ, ξ). By

(ii), τ = ξ and so ρ = η. Therefore we have shown that for x1, x2, x3, x4 ∈ D,
if x1x

−1
2 = x3x

−1
4 , then {x1, x4} = {x2, x3}. On the other hand, |G \ N | =

n2−n = |D|(|D|−1). Hence D is an affine difference set in G relative to N .

5 Multipliers of Affine Difference Sets

In this section we assume thatD is an affine difference set of order n in an abelian
group G relative to a subgroup N(≤ G). Set H = G/N and let ω,w,w0,H

∗ be

as defined in section 4. By Lemma 4.2, we may assume that
∏
x∈D

x = 1. Let

maps c and d be as defined in Proposition 4.5 and Definition 4.3, respectively.
In this section we study multipliers of affine difference sets.

The following result is well known.

Lemma 5.1. D(m) = D for each integer m(> 0) such that π(m) ⊂ π(n).

Proof. Let Ω be the set of translates of D. A map φ from Ω to G defined

by φ(Dx) =
∏

y∈Dx

y is bijective as (n, |G|) = 1 and φ(Dx) = c0x
n, where

c0 =
∏

d∈D d. By Result 2.2, D(m) = Da for some a ∈ G. Hence, as φ(Da) =

φ(D(m)) = φ(D)m = 1, we have Da = D. Thus D(m) = D and the lemma
holds.

By the definition of d we have the following.

Lemma 5.2. Let m be a positive integer such that π(m) ⊂ π(n). If ξm = ω for
some ξ (∈ H), then ξ = ω.
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Proof. As (m,n + 1) = 1, there exist a, b ∈ Z such that am + b(n + 1) = 1.
Hence ξ = ξam+b(n+1) = (ξm)a = ωa. By Lemma 4.1, it suffices to consider the
case 2 - n. Then 2 - a and therefore ξ = ω.

Lemma 5.3. Let m be a positive integer such that π(m) ⊂ π(n). Then d(ξ)m =
d(ξm) for any ξ ∈ H∗(= H \ {ω}).

Proof. By definition of d, d(ξ)m = ad(ξm) for some a ∈ N . By Lemma 5.2,
ξm ̸= ω and so d(ξm) ∈ D. As D(m) = D, a = 1.

Definition 5.4. We define a map g : H −→ N by g(σ) =
∏
ξ∈H

c(σ, ξ).

Lemma 5.5. The following hold.

(i) g(1) = d(1)2.

(ii) If σ ̸= ω, then g(σ) = d(σ)d(σ−1). In particular, for any σ ∈ H, g(σ) =
g(σ−1).

Proof. By definition, g(1) = d(1)n+1 = d(1)n−1d(1)2. Hence (i) holds. We

note that g(σ) =
∏
ξ∈H

d(σ)d(ξ)d(σξ)−1 = (
∏
ξ∈H

d(σ) )(
∏
ξ∈H

d(ξ) )(
∏
ξ∈H

d(σξ) )−1 =

d(σ)n+1. On the other hand, by Lemma 5.3, d(σ)n = d(σn) = d(σ−1). Therefore
g(σ) = d(σ)d(σ−1).

Lemma 5.6. If π(s) ⊂ π(n) and σ ̸= ω, then g(σ)s = g(σs).

Proof. As D(s) = D, the lemma follows immediately from Lemma 5.3.

Proposition 5.7. (i) If σ ̸= ω, τ ̸= ω and g(σ) = g(τ), then {σ, σ−1} =
{τ, τ−1}.
(ii) Assume 2 - n and σ ̸= ω. If g(σ) = g(1), then σ = 1.

Proof. Assume g(σ) = g(τ) for some σ, τ ∈ H∗. Then, by Lemma 5.5(ii),
d(σ)d(σ−1) = d(τ)d(τ−1). Hence d(σ)d(τ)−1 = d(τ−1)d(σ−1)−1. From this,
{σ, σ−1} = {τ, τ−1}. Thus (i) holds.

Assume 2 - n and g(σ) = g(1) for some σ ∈ H∗. Then, by assumption,
d(σ), d(1) ∈ D. Since g(σ) = g(1), d(σ)d(σ−1) = d(1)d(1) by Lemma 5.5.
Hence d(σ)d(1)−1 = d(1)d(σ−1)−1. Thus σ = 1 and (ii) holds.

Lemma 5.8. N = ⟨g(σ) |n σ ∈ H⟩. In particular l.c.m.({o(g(σ)) | σ ∈ H}) =
exp(N).

Proof. Set N0 = ⟨g(σ) | σ ∈ H⟩. If 2 | n, |Im(g)| ≥ n+1−1
2 = n

2 by Proposition
5.7. Hence |N0| ≥ n

2 and so |N0| = n−1 = |N | as n−1 is odd. If 2 - n, similarly
|Im(g)| ≥ n+1−2

2 +1 = n−1
2 +1 by Proposition 5.7. Hence |N0| = |N |. Therefore

N0 = N . By Lemma 2.3 we have l.c.m.({o(g(σ)) | σ ∈ H}) = exp(N).

The following is a generalization of Theorem 15 of [3].
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Theorem 5.9. Let D be an affine difference set satisfying (3)(4) in an abelian
group G of order n2 − 1 relative to N and let g be a map from H(= G/N) to
N defined in Definition 5.4. If π(m) ⊂ π(n) and σ ∈ H∗, then there exists an
integer kσ,m ∈ {1, 2} such that ordo(σ)(m) = kσ,mordo(g(σ))(m).

Proof. Set e = ordo(g(σ))(m) and f = ordo(σ)(m). Then mf − 1 = o(σ)a for

some a ∈ N. By Lemma 5.6, g(σ) = g(σmf−o(σ)a) = g(σmf

) = g(σ)m
f

. Hence
mf − 1 = o(g(σ))b for some b ∈ N. From this e | f . On the other hand,
me−1 = o(g(σ))k for some k ∈ N. Hence g(σ) = g(σ)m

e−o(g(σ))k = g(σ)m
e

. By
Lemma 5.6, g(σ)m

e

= g(σme

). It follows from Lemma 5.2 and Proposition 5.7
that σme ∈ {σ, σ−1}. If σme

= σ, then f | e and so f = e. If σme

= σ−1, then

σm2e

= σ and so f | 2e. Therefore, we have either f = e or f = 2e and hence
the theorem holds.

Though the following corollary is substantially contained in [1] Section5 (see
also Corollary 18 of [3]), we give a new proof as an application of Theorem 5.9.

Corollary 5.10. ([1]) Assume D is an affine difference set of order n in an
abelian group G relative to a subgroup N of G. Let m be a positive integer
satisfying π(m) ⊂ π(n). Then one of the following holds.

(i) ordexp(H)(m) = ordexp(N)(m).

(ii) ordexp(H)(m) = 2 · ordexp(N)(m).

Proof. Set eH = exp(H) and eN = exp(N). Let α be an element of H satis-
fying o(α) = eH . By Theorem 5.9, ordeH (m) = ordo(α)(m) = kαordo(g(α))(m)
for some integer kσ,m ∈ {1, 2}. Hence ordeH (m) | 2ordo(g(α))(m). Applying
Lemmas 2.4 and 5.8, we have ordeH (m) | 2ordeN (m). On the other hand,
kσ,mordo(g(σ))(m) = ordo(σ)(m) for any σ ∈ H by Theorem 5.9. Hence
ordo(g(σ))(m) | ordo(σ)(m). By Lemma 2.4, ordo(g(σ))(m) | ordeH (m). Thus
ordeN (m) | ordeH (m) and the corollary holds.

We also have the following.

Corollary 5.11. Let G,N,H and n be as in Corollary 5.10. If π(m) ⊂ π(n),
then one of the following holds.

(i) ordexp(G)(m) = ordexp(H)(m).

(ii) ordexp(G)(m) = 2 · ordexp(H)(m).

Proof. Set eG = exp(G), eH = exp(H), eN = exp(N) and k = l.c.m.(eH , eN ).
Assume 2 | n. Then eG = k = eHeN . Hence

ordeG(m) = l.c.m.(ordeH (m), ordeN (m)). Applying Corollary 5.10, the corollary
holds.

Assume 2 - n. Then eG = 2k = eHeN . Hence, ordeG(m) = ord2k(m) ∈
{ordk(m), 2ordk(m)}. Thus the corollary also holds in this case.
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We note that computional results have confirmed the prime power conjecture
for affine difference sets ([6], [7], [8]). In [7], it has been checked that the order
n has to be a prime power in abelian case if n ≤ 1, 0000.

Applying Corollary 5.10 to abelian affine difference sets of odd order n ≤
100, 000 we did the following test by GAP to get a list of n which can not be
ruled out.

(i) Choose an odd integer n ≤ 100, 000 and let {p1, p2, · · · , ps} be the set of
prime divisors of n.

(ii) Let qe11 qe22 · · · qett be the prime factorization of n− 1.

(iii) Let rf11 rf22 · · · rfuu be the prime factorization of n+ 1.

(iv) Choose b = qi11 qi22 · · · qitt , where 1 ≤ ik ≤ ek for each k(≤ t) and c =

rj11 rj22 · · · rjuu , where 1 ≤ jk ≤ fk for each k(≤ u).

(v) If ordb(pi)/ordc(pi) ∈ {1, 2} for each i(≤ s), then add n to the list.

Then the list is as follows.

33, 55, 77, 259, 309, 325, 437, 511, 513, 611, 649, 687, 843, 901, 973, 1347, 1351, 1397, 1405,
1585, 1751, 1757, 1939, 2049, 2169, 2369, 2427, 2669, 2763, 3649, 5001, 5251, 5489, 5699, 5951,
7379, 7441, 8885, 8935, 9369, 9801, 10467, 10827, 11333, 11391, 12147, 12151, 12629, 12701,
13323, 13393, 13551, 13853, 14333, 14769, 15191, 15557, 15637, 16255, 18027, 18267, 18431,
19999, 22757, 23419, 24319, 24483, 24577, 24603, 25089, 25271, 28323, 30483, 30501, 31853,
32645, 32805, 33025, 34107, 34993, 36027, 36437, 36507, 36991, 37613, 44199, 45463, 45871,
46973, 47117, 52549, 52587, 56251, 57961, 59291, 60031, 60363, 60365, 60797, 61735, 62163,
62531, 62667, 63713, 64079, 67923, 68095, 68427, 72837, 76049, 76277, 77907, 80187, 81191,

82443, 82783, 85623, 87197, 90605, 92611, 94391, 95039, 95171, 95941, 97363, 98099, 99933
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