
Modified generalized Hadamard matrices
and constructions for transversal designs

Yutaka Hiramine
Department of Mathematics, Faculty of Education, Kumamoto University,

Kurokami, Kumamoto, Japan

hiramine@gpo.kumamoto-u.ac.jp

Abstract. It is well known that there exists a transversal design TDλ[k;u]
admitting a class regular automorphism group U if and only if there exists
a generalized Hadamard matrix GH(u, λ) over U . Note that in this case the
resulting transversal design is symmetric by Jungnickel’s result.

In this article we define a modified generalized Hadamard matrix and show
that transversal designs which are not necessarily symmetric can be constructed
from these under a modified condition similar to class regularity even if it admits
no class regular automorphism group.
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1 Introduction

A transversal design TDλ[k;u] (u > 1, k = uλ) is an incidence structure (P,B),
where

(i) P is a set of uk points partitioned into k classes (called point classes),
each of size u,

(ii) B is a collection of k-subsets of P (called blocks),

(iii) Any two distinct points in the same point class are incident with no block
and any two points in distinct point classes are incident with exactly λ
blocks.

A transversal design D = (P,B) is called symmetric if the dual structure D∗ of
D is also a transversal design with the same parameters as D. If D is symmetric,
the point classes of D∗ are said to be the block classes of D.

A transversal design D is called class regular with respect to U if U is an
automorphism group of D acting regularly on each point class. If D is class
regular with respect to U , then there exists a generalized Hadamard matrix
[di,j ] of order k with entries from U (for short GH(u, λ)) such that whenever
i ̸= ℓ the set of differences {dijd−1

ℓj | 1 ≤ j ≤ k} contains each element of U
exactly λ times. Conversely, from a generalized Hadamard matrix GH(u, λ)
over a group U of order u, one can construct a transversal design TDλ[k;u]
which admits U as a class regular automorphism group (Theorem 3.6 of [2]).
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In this case (P,B) is necessarily a symmetric transversal design by a result of
Jungnickel (Corollary 6.9 of [7]). Hence, if a transversal design TDλ[k;u] is not
symmetric, it admits no class regular automorphism group and so can not be
obtained from any generalized Hadamard matrix.

In this article we show that if (P,B) admits an automorphism group G
acting semiregularly on P ∪ B and if for each point class C there exists a sub-
group UC(≤ G) acting regularly on C, then we can obtain a modified generalized
Hadamard matrix (Theorem 3.2, Definition 3.3). UC is, so to speak, an individ-
ual class regular subgroup depending on C. We note that UC is not always a
normal subgroup of G. Conversely, we show that from a modified generalized
Hadamard matrix we can construct a transversal design which does not al-
ways admit a class regular automorphism group (Theorem 3.5). As an example
we construct transversal designs from any translation plane using this method
(Theorem 4.1). These are not always admit class regular automorphism groups
(see Remark 4.2). Furthermore, by a modified Kronecker product we construct
many transversal designs (Theorem 5.2).

2 Preliminaries

Let H be a group of order q2(> 1). A set of q + 1 subgroups {H1, · · · ,Hq+1}
of H is called a spread of H if |H1| = · · · = |Hq+1| = q and Hi ∩Hj = 1 for all
distinct i and j with 1 ≤ i, j ≤ q + 1. Then the following holds.

Lemma 2.1. ([6],[8]) Let H be a group of order q2 and {H1, · · · ,Hq+1} a
spread of H. Then

(i) H = HiHj for each i and j, 1 ≤ i ̸= j ≤ q + 1.

(ii) H∗ = H∗
1 ∪ · · · ∪ H∗

q+1 is a disjoint union, where X∗ = X \ {1} for a
subgroup X of H.

(iii) H is an elementary abelian p-group for a prime p.

The following fact is well known.

Lemma 2.2. Let D = (P,B) be a transversal design TDλ[k;u] and let U be a
class regular automorphism group of D. Then D is symmetric and U is also a
class regular automorphism group of the dual D∗ of D.

We note the following simple fact without proof, which we often use for the
rest of the paper .

Lemma 2.3. Let H and N be subgroups of a group G. If G = HN (as the
product operation on G), then

∑
x∈H

∑
x∈N = |H ∩N |

∑
x∈G as multiplication

in the group ring Z[G].

Let (P,B) be a transversal design TDλ[k;u] with k = uλ and u > 1. For
points P,Q ∈ P, P ∼ Q indicates that P and Q are in the same point class of
(P,B).
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Let G be a group. For a subset S of G, S(−1) = {x−1 : x ∈ S}. Similarly,
for a group ring element z =

∑
x∈G axx ∈ Z[G], z(−1) =

∑
x∈G axx

−1 (∈ Z[G]).
Throughout the rest of this paper, all sets and groups are assumed to be finite
and a subset S of a group G is identified with a group ring element

∑
x∈S x (∈

Z[G]) unless specifically stated.

3 Modified generalized Hadamard matrices

In this section we consider a transversal design which admits an automorphism
group satisfying the following.

Hypothesis 3.1. Let (P,B) be a transversal design TDλ[k;u] and let H be an
automorphism group of (P,B) such that

(i) H acts semiregularly both on P and on B,

(ii) Each H-orbit on P is a union of some point classes.

From Hypothesis 3.1, |H| = us for some integer s | uλ and each H-orbit on P
contains exactly s point classes. Moreover, setting t = k

s , H has exactly t orbits
both on P and on B.

Theorem 3.2. Assume Hypothesis 3.1. Let {Q1, · · · ,Qt} be the set of H-
orbits on P and {B1, · · · ,Bt} the set of H-orbits on B. If we choose Qi ∈ Qi

and Bi ∈ Bi for each i, 1 ≤ i ≤ t, then the following holds.

(i) Set Ui = {x ∈ H : Qix ∼ Qi}, 1 ≤ i ≤ t. Then Ui is a subgroup of H of
order u.

(ii) Set Dij = {x ∈ H : Qix ∈ Bj}, 1 ≤ i, j ≤ t. Then,

(a) |Dij | = s (1 ≤ i, j ≤ t).

(b)
∑t

j=1 DijD
(−1)
ℓj = λH (1 ≤ i ̸= ℓ ≤ t).

(c)
∑t

j=1 DijD
(−1)
ij = k + λ(H − Ui) (1 ≤ i ≤ t).

Proof. Let Pr(⊂ Qi) be the point class containing the point Qi. As H acts on
Qi regularly, |Ui| = |Pr| = u. Let x, y ∈ Ui. Then Qi x ∼ Qi and Qi y ∼ Qi.
From this Qi x ∼ Qi y. Hence Qi xy

−1 ∼ Qi and so xy−1 ∈ Ui. Thus (i) holds.
We fix i and ℓ (1 ≤ i, ℓ ≤ t) and assume first that i ̸= ℓ. For each c ∈ H

we set Γi,ℓ,c = {(a, b, j) : a ∈ Dij , b ∈ Dℓj , 1 ≤ j ≤ t, c = ab−1}. It suffices to
prove |Γi,ℓ,c| = λ in order to check (b). The condition on Γi,ℓ,c is equivalent to
c = ab−1 and Qia,Qℓb ∈ Bj . Hence Qic,Qℓ ∈ Bjb

−1. As Qic ∈ Qi, Qℓ ∈ Qℓ

and i ̸= ℓ, it follows that Qic ̸∼ Qℓ and so there exist exactly λ blocks containing
both Qic andQℓ, say B′

1, · · · , B′
λ. For eachm (1 ≤ m ≤ λ), there exists a unique

pair (j, b) such that B′
m = Bjb

−1, 1 ≤ j ≤ t, b ∈ H. Since Qℓ ∈ B′
m = Bjb

−1,
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we have Qℓb ∈ Bj . From this, b ∈ Dℓj . Moreover, Qic ∈ B′
m = Bjb

−1. Hence
Qia ∈ Bj and so a ∈ Dij . Therefore |Γi,ℓ,c| = λ and (b) holds.

We now consider Γi,i,c = {(a, b, j) : a ∈ Dij , b ∈ Dij , 1 ≤ j ≤ t, c = ab−1}.
Similarly as in the proof of (b), the condition is equivalent to Qic,Qi ∈ Bjb

−1.
If c = 1, the number of blocks containing Qi is exactly k. Let B′

1, · · · , B′
k be

such blocks. Then, for each m, 1 ≤ m ≤ k, there exists a unique (j, b) such
that B′

m = Bjb
−1, 1 ≤ j ≤ t, b ∈ H. As Qi ∈ Bjb

−1, we have b ∈ Dij . Hence
|Γi,i,1| = k. Assume c ∈ Ui \ {1}. Then, as Qi ∼ Qic and Qi ̸= Qic, |Γi,i,c| = 0.
Assume c ∈ H \ Ui. Then, as Qi ̸∼ Qic, the number of blocks containing
Qi and Qic is λ. Let B′

1, · · · , B′
λ be such blocks. For each m (1 ≤ m ≤ λ)

there exists a unique (j, b) such that B′
m = Bjb

−1, 1 ≤ j ≤ t, b ∈ H. Since
Qi, Qic ∈ B′

m = Bjb
−1, b ∈ Dij and a ∈ Dij . Hence |Γi,i,c| = λ. Thus (c) holds.

By (c), DijD
(−1)
ij ∩ Ui \ {1} = ∅. Hence, as |H| = su and |Ui| = u, we have

|Dij | ≤ s counting cosets of Ui. Applying the trivial character χ0 of H to (c),
we have s2t ≥

∑
1≤j≤t |Dij |2 = χ0(k + λ(H − Ui)) = s2t. This forces |Dij | = s

for each i, j, 1 ≤ i, j ≤ t. Thus (a) holds.

We show that the converse of Theorem 3.2 is also true. We first generalize
the notion of a generalized Hadamard matrix. The set of n by n matrices with
coefficients in a ring R is denoted by Mn(R) .

Definition 3.3. Let H be a group of order su. For subsets Dij (1 ≤ i, j ≤
t, st = uλ) of H, we call a matrix [Dij ] ∈ Mt(Z[H]) a modified generalized
Hadamard matrix with respect to subgroups Ui (1 ≤ i ≤ t) of H of order u if
the following conditions are satisfied :

|Dij | = s for all i, j, 1 ≤ i, j ≤ t, and

∑
1≤j≤t

DijD
(−1)
ℓj =

{
k + λ(H − Ui) if i = ℓ,

λH otherwise.
(1)

For short, we say [Dij ] is a GH(s, u, λ) matrix with respect to Ui, 1 ≤ i ≤ t.
If U1 = · · · = Ut = U for a subgroup U of H, we simply say that [Dij ] is a
GH(s, u, λ) matrix with respect to U .

Remark 3.4. If [Dij ] is a GH(s, u, λ) matrix with respect to a normal subgroup
U of H, the notion in Definition 3.3 is the same as that of [1]. Clearly any
GH(1, u, λ) matrix is an ordinary generalized Hadamard matrix GH(u, λ) (see
[2]). Moreover, ifD is a (uλ, u, uλ, λ)-difference set (see [9]) in a group G relative
to U , then the 1 by 1 matrix [D] is a GH(uλ, u, λ) matrix with respect to U .

We now show that a transversal design TDλ[k;u] is obtained from a GH(s, u, λ)
matrix. For a GH(s, u, λ) matrix [Dij ] ∈ Mt(Z[H]), we define a set of points P
and a set of blocks B in the following way.

P = {1, 2, · · · , t} ×H, B = {Bjh : 1 ≤ j ≤ t, h ∈ H}, (2)

where Bjh =
∪

1≤i≤t

(i,Dijh) (=
∪

1≤i≤t

{(i, dh) : 1 ≤ i ≤ t, d ∈ Dij}).
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Then we have

Theorem 3.5. Let [Dij ] ∈ Mt(Z[H]) be a GH(s, u, λ) matrix over a group H
of order su with respect to subgroups Ui (1 ≤ i ≤ t), where t = uλ/s. If we
define P and B by (2), then the following holds.

(i) (P,B) is a transversal design TDλ[k;u] (k = uλ).

(ii) For each i (1 ≤ i ≤ t) and x ∈ H, set Pi,Uix = {(i, wx) : w ∈ Ui} (1 ≤
i ≤ t, x ∈ H). Then Pi,Uix is a point class of (P,B).

(iii) If we define the action of H on (P,B) by (i, c)x = (i, cx), (Bj,d)
x = Bj,dx,

then H is an automorphism group of (P,B) acting semiregularly both on
P and on B.

(iv) For every x ∈ H, x−1Uix acts regularly on a point class Pi,Uix (1 ≤ i ≤ t).

Proof. Clearly each block contains exactly k points. We choose two distinct
points (i, a), (ℓ, b) ∈ P and count the number of blocks N(i,a),(ℓ,b) containing
both (i, a) and (ℓ, b) :

N(i,a),(ℓ,b) = |{Bjh : ah−1 ∈ Dij , bh−1 ∈ Dℓj 1 ≤ j ≤ t, h ∈ H}|.

Put N = N(i,a),(ℓ,b) and d1 = ah−1, d2 = bh−1. Then we have

N = |{(j, d1, d2) : 1 ≤ j ≤ t, d1 ∈ Dij , d2 ∈ Dℓj , d1d
−1
2 = ab−1}|.

Assume i = ℓ. Then a ̸= b. By (1), N = 0 if ab−1 ∈ Ui \ {1} and N = λ if
ab−1 ∈ H \ Ui. On the other hand, assume i ̸= ℓ. Then, as d1d

−1
2 = ab−1 ∈ H,

we have N = λ by (1). Therefore (i) and (ii) hold.
By the definition of the action of H on (P,B),

(i, c) ∈ Bj,d ⇐⇒ (i, c) ∈ (i,Dijd) ⇐⇒ c ∈ Dijd

⇐⇒ cx ∈ Dijdx ⇐⇒ (i, cx) ∈ Bj,dx ⇐⇒ (i, c)x ∈ Bx
jd.

Thus (iii) holds. Moreover, as (Pi,Uix)x
−1Uix = Pi,Uix(x−1Uix) = Pi,Uix, (iv)

also holds.

Example 3.6. Let u = 3 and λ = 2. Let H = ⟨a, b⟩ ≃ Z3 × Z3 be an abelian
group of order 9 generated by a and b and set s = 3 and t = 2. We put
Dij ∈ Z[H], 1 ≤ i, j ≤ 2, and Ui ≃ Z3, 1 ≤ i ≤ 2, as follows :

U1 = ⟨b⟩, U2 = ⟨a⟩

[Dij ] =

[
1 + ab+ a2b a2 + b+ ab
1 + ab+ ab2 1 + a2b2 + a2b

]
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Then we can verify that Dij and Uj satisfy the following.

D11D
(−1)
11 +D12D

(−1)
12 = 6 + 2(H − U1)

D21D
(−1)
21 +D22D

(−1)
22 = 6 + 2(H − U2)

D11D
(−1)
21 +D12D

(−1)
22 = 2H

Therefore [Dij ] is a GH(3, 3, 2) matrix with respect to U1, U2 and applying
Theorem 3.5 we obtain a transversal design TD2[6; 3].

Example 3.7. Set u = 3, λ = 4 and H = ⟨a, b⟩ ≃ Z3 × Z6. Set t = 2 and
s = 6. We put Dij (1 ≤ i, j ≤ 2) and Ui ≃ Z3 (1 ≤ i ≤ 2) as follows.

U1 = ⟨ab2⟩, U2 = ⟨ab4⟩

[Dij ] =

[
1 + b+ b2 + b3 + a+ ab 1 + a2b5 + ab4 + a2b+ b4 + ab

1 + ab5 + a2b4 + ab+ b4 + a2b 1 + b+ b2 + b3 + a2 + a2b

]
Then we can check that Dij and Uj satisfy (1). Hence [Dij ] is a GH(6, 3, 4)
matrix with respect to U1 and U2 and by Theorem 3.5 we obtain a TD4[12; 3].
Actually, [Dij ] is constructed by using a non-normal (12, 3, 12, 4)-difference set
in [5]. We mention the method of construction of GH(s, u, λ) matrices from
(uλ, u, uλ, λ)-difference sets in Section 6.

Remark 3.8. It is possible to have H�Ui for every i, 1 ≤ i ≤ t. But, it is not
always true that U1 = · · · = Ut. The group ⟨U1, · · · , Ut⟩ generated by Ui’s is
kind of like a minimal group in order to determine the transversal design even
if there is no class regular automorphism group.

Lemma 3.9. Let [Dij ] ∈ Mt(Z[H]) be a GH(s, u, λ) matrix over a group H, t =
uλ/s. Let j, ℓ ∈ {1, 2, · · · , t} and let a, b ∈ H. If Dija = Diℓb for every i,
then (j, a) = (ℓ, b). In particular, no two columns of a GH(s, u, λ) matrix are
identical.

Proof. Assume Dija = Diℓb for every i, 1 ≤ i ≤ t and let (P,B) be the transver-
sal design TDλ[k;u] constructed in Theorem 3.5. Then Bja = Bℓb as subsets of
P. On the other hand, by Lemma 1.10 of [7], any transversal design TDλ[k;u]
with u > 1 has no repeated blocks. Hence Bja = Bℓb implies (j, a) = (ℓ, b).
Thus the lemma holds.

Theorem 3.10. Let [Dij ] be a GH(s, u, λ) matrix over a group H with re-
spect to subgroups Ui of H, 1 ≤ i ≤ t = uλ/s. Then the transversal de-
sign TDλ[k;u], k = uλ, corresponding to [Dij ] is symmetric if and only if

[D
(−1)
ij ]T is a GH(s, u, λ) matrix over H with respect to suitable subgroups Vi of

H, 1 ≤ i ≤ t. If this condition is satisfied, then Bj,Vjx is a block class for all j
and x, 1 ≤ j ≤ t, x ∈ H.

Proof. Assume the transversal design (P,B) corresponding to [Dij ] is symmetric.
By Lemma 3.9, Bjg ̸= Bℓh if (j, g) ̸= (ℓ, h). We note that
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(a) If (j, g) ̸= (ℓ, h) and Bjg ∼ Bℓh, then
∪

1≤i≤t(i,Dijg) ∩
∪

1≤i≤t(i,Diℓh) = ∅.
(b) If Bjg ̸∼ Bℓh, then |

∪
1≤i≤t(i,Dijg) ∩

∪
1≤i≤t(i,Diℓh)| = λ.

The facts (a) and (b) imply that each coefficient of
∑

1≤i≤t D
(−1)
ij Diℓ is either 0

or λ. As (j, g) ̸= (ℓ, h) iff either j ̸= ℓ or j = ℓ and gh−1 ̸= 1, there are subsets
S of H and T of H \ {1} such that∑

1≤i≤t

D
(−1)
ij Diℓ = λS (j ̸= ℓ) (3)

∑
1≤i≤t

D
(−1)
ij Dij = k + λT (4)

We will show that (i) S = H and (ii) T = H − Vj for a subgroup of H of order
u.

First we show (i). Applying the trivial character of H to (3) ts2 = λ|S|.
Hence |S| = sk/λ = us = |H|, which implies S = H.

We now show (ii). Set Vj = H \ T . Then, applying the trivial character
of H to (4) we have k + λ|T | = ts2. Hence |T | = |H| − u and so |Vj | = u.
Moreover, we show that Vj is a subgroup of H of order u. We first note that
1 ∈ Vj . Clearly Vj \ {1} = {x ∈ H : Bj,x ∩Bj,1 = ∅}. Let x, y ∈ Vj \ {1}, x ̸= y.
Then, Bj,1 ∩ Bj,x = ∅ and Bj,1 ∩ Bj,y = ∅. Hence Bj,x ∼ Bj,1 ∼ Bj,y and so
Bj,x ∼ Bj,y. It follows that Bj,xy−1 ∩ Bj,1 = ∅. From this, xy−1 ∈ Vj \ {1}.
Hence Vj is a subgroup of H of order u and T = H − Vj . Consequently,

t∑
i=1

D
(−1)
ij Diℓ =

{
k + λ(H − Vj) if j = ℓ,

λH otherwise.
(5)

for suitable subgroups V1, · · · , Vt of H. Therefore [D
(−1)
ij ]T is a GH(s, u, λ)

matrix over H with respect to Vj , 1 ≤ j ≤ t.
Conversely, assume that there exist subgroups V1, V2, · · · , Vt of H of order

u satisfying (5). Then,

|Bja ∩Bℓb| =
∑

1≤i≤t

|Dija ∩Diℓb|

= |{(x, y) : x ∈ Dij , y ∈ Diℓ, x
−1y = ab−1, 1 ≤ i ≤ t}|.

Hence, if a ̸= b, then by (5) we have

|Bja ∩Bℓb| =

{
0 if j = ℓ and ab−1 ∈ Vj \ {1},
λ otherwise.

It follows that (B,P) is a dual transversal design TDλ[k;u] with the block classes
Bj,Vjx (1 ≤ j ≤ t, x ∈ H). Thus (P,B) is symmetric.

By Lemma 2.2 and Theorem 3.10, we have
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Corollary 3.11. Let [Dij ] be a GH(s, u, λ) matrix over a group H with respect

to a normal subgroup U of H. Then [D
(−1)
ij ]T is also a GH(s, u, λ) matrix over

a group H with respect to U .

Example 3.12. Let [Dij ] be the GH(3, 3, 2) matrix in Exampme 3.6. Then

D
(−1)
11 D11 +D

(−1)
21 D21 = 6+ (H −⟨a⟩)+ (H −⟨b⟩). Applying Theorem 3.10 the

transversal design obtained from [Dij ] is not symmetric.
Similarly, the transversal design obtained from a GH(3, 3, 4) matrix in Ex-

ample 3.7 is not symmetric as we can check that D
(−1)
11 D11 + D

(−1)
21 D21 =

12 + 2(ab2 + ab4 + a2b2 + a2b4) + 3(ab + a2b5) + 4(a + a2 + b + b2 + b3 + b4 +
b5 + ab3 + a2b3) + 5(ab5 + a2b).

4 Transversal designs constructed from spreads

In this section we construct transversal designs from spreads as an application
of Theorem 3.5.

Let H be a group of order q2(> 1) and {H1, · · · ,Hq+1} a spread of H. We
show that many GH(q, q, q) matrices can be constructed from each spread.

Theorem 4.1. Let q be a power of a prime p and Let {H1, · · · , Hq+1} be a
spread of an elementary abelian p-group H of order q2. Let A = [nij ] be a q× q
matrix with entries from I = {1, 2, · · · , q + 1} satisfying the following.

I = {ni1, ni2, · · · , niq,mi}, 1 ≤ i ≤ q, (6)

and

I = {n1j , n2j , · · · , nqj , ℓj}, 1 ≤ j ≤ q, (7)

for some m1, · · · ,mq ∈ I and ℓ1, · · · , ℓq ∈ I. Set Dij = Hnij for each i, j with
1 ≤ i, j ≤ q. Then [Dij ] is a GH(q, q, q) matrix with respect to Hm1 , . . . , Hmq

and the transversal design TDq[q
2; q] corresponding to [Dij ] is symmetric.

Proof. Clearly, Hni1H
(−1)
ni1 + Hni2H

(−1)
ni2 + · · · + HniqH

(−1)
niq = q(Hni1 + · · · +

Hniq ) = q2 + q(H − Hmi) by Lemma 2.1(ii). Moreover, by Lemma 2.1(i),

Hni1H
(−1)
nj1 + Hni2H

(−1)
nj2 + · · · + HniqH

(−1)
njq = qH if j ̸= ℓ. Thus [Dij ] is a

GH(q, q, q) matrix with respect to Hm1 , . . . ,Hmq . Cleary, similar conditions

hold for columns of [D
(−1)
ij ]. Hence [D

(−1)
ij ]T is also a GH(q, q, q) matrix with

respect to Hℓ1 , . . . , Hℓq . Therefore the transversal design corresponding to [Dij ]
is symmetric applying Theorem 3.10.

Remark 4.2. Transversal designs obtained by Theorem 4.1 are always symmet-
ric but do not always admit class regular automorphism groups. For example,

let q = 3 and G = ⟨a, b⟩ ≃ Z3 × Z3 and set M =

 ⟨a⟩ ⟨ab⟩ ⟨a2b⟩
⟨ab⟩ ⟨a2b⟩ ⟨a⟩
⟨a2b⟩ ⟨b⟩ ⟨ab⟩

. Then
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we can check by a computer search that the symmetric transversal design ob-
tained from M does not admit a class regular autmorphism group. Therefore
this is one of the two symmetric transversal designs obtained by V.C. Mavron
and V.D. Tonchev (see Table 3 of [10]).

5 Product construction from GH(s, u, λ)’s

It is well known that from a GH(u, λ) matrix and a GH(u, λ′) matrix over a
group U one can construct a GH(u, uλλ′) matrix by Kronecker product ([4]). In
this section we generalize this method to a GH(s, u, λ) matrix and a GH(s′, u, λ′)
matrix.

First we define a transformed Kronecker product in the following way.

Definition 5.1. Let G and N be groups. For each i, 1 ≤ i ≤ n, let fi be
a monomorphism from N into G. For b =

∑
x∈N cxx (∈ Z[N ]) we define bfi

by bfi =
∑

x∈N cxx
fi (∈ Z[G]). For A = [aij ] ∈ Mn(Z[G]) and B = [bij ] ∈

Mr[Z[N ]], a nr by nr matrix A ⊗ B(f1,··· ,fn) labelled with {(i, j) : 1 ≤ i ≤
n, 1 ≤ j ≤ r} is defined by

A⊗B(f1,··· ,fn) =


Bf1a11 Bf1a12 · · · Bf1a1n
Bf2a21 Bf2a22 · · · Bf2a2n

...
...

...
...

Bfnan1 Bfnan2 · · · Bfnann

 ,

where Bfℓ = [bfℓij ]

Using this product we can show the following.

Theorem 5.2. Let G be a group. Let H be a normal subgroup of G of order su
and H ′ a subgroup of G of order s′u satisfying G = HH ′ (the product operation
on G), U = H ∩ H ′ and |U | = u. Let D = [Dij ] ∈ Mt(Z[H]) (t = uλ/s)
be a GH(s, u, λ) matrix over H with respect to Ui (1 ≤ i ≤ t) and let W =
[Wℓm] ∈ Mt′(Z[H ′]) (t′ = uλ′/s′) be a GH(s′, u, λ′) matrix over H ′ with respect
to U . Assume that there exists a monomorphism fi from H ′ into G satisfying
the following :

Ufi = Ui, G = H(H ′)fi (the product operation on G) (8)

for each i, 1 ≤ i ≤ t. Set ∆ = {1, · · · , t} × {1, · · · , t′}. Then we have

(i) The tt′ by tt′ matrix D⊗W (f1,··· ,ft) labelled with ∆ is a GH(ss′, u, uλλ′)
matrix over G with respect to U(i,ℓ) = Ui ((i, ℓ) ∈ ∆).

(ii) The transversal design corresponding to D ⊗W (f1,··· ,ft) is symmetric if
and only if the transversal design corresponding to D is symmetric.
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Proof. Set k = uλ, k′ = uλ′ and M = D ⊗W (f1,··· ,ft). Set
M = [M(i,ℓ),(j,m)] ((i, ℓ), (j,m) ∈ ∆). Then,

M(i,ℓ),(j,m) = W fi
ℓmDij (1 ≤ i, j ≤ t, 1 ≤ ℓ,m ≤ t′). (9)

By assumption,

t∑
j=1

DijD
(−1)
ℓj = λH (1 ≤ i ̸= ℓ ≤ t) (10)

t∑
j=1

DijD
(−1)
ij = k + λ(H − Ui) (1 ≤ i ≤ t) (11)

t′∑
j=1

WijW
(−1)
ℓj = λ′H ′ (1 ≤ i ̸= ℓ ≤ t′) (12)

t′∑
j=1

WijW
(−1)
ij = k′ + λ′(H ′ − U) (1 ≤ i ≤ t′) (13)

We note that

(H ′)fi � Ufi = Ui (14)

and if we regard H and (H ′)fi as elements of Z[G], then H(H ′)fi = uG.
We show that

∑
(m,p)∈∆

M(i,a),(m,p)M
(−1)
(j,b),(m,p) =

{
kk′ + λλ′u(G− Ui) if (i, a) = (j, b),

λλ′uG otherwise.

First assume that (i, a) = (j, b). By (9) and (11),∑
(m,p)∈∆

M(i,a),(m,p)M
(−1)
(i,a),(m,p) =

∑
(m,p)∈∆

W fi
apDim(W fi

apDim)(−1)

=
∑

1≤p≤t′

∑
1≤m≤t

W fi
ap(DimD

(−1)
im )(W (−1)

ap )fi

=
∑

1≤p≤k′

W fi
ap(k + λ(H − Ui))(W

(−1)
ap )fi

= k
∑

1≤p≤t′

(WapW
(−1)
ap )fi + λ

∑
1≤p≤t′

W fi
apH(W (−1)

ap )fi

−λ
∑

1≤p≤t′

W fi
apUi(W

(−1)
ap )fi . (15)
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Since G�H and H ′ � U , it follows from (13), (14) and (15) that∑
(m,p)∈∆

M(i,a),(m,p)M
(−1)
(i,a),(m,p)

= k(k′ + λ′(H ′ − U))fi + λH(k′ + λ′H ′ − λ′U)fi − λUi(k
′ + λ′(H ′ − U))fi

= kk′ + kλ′(H ′ − U)fi + λH(k′ + λ′(H ′)fi − λ′Ui)− λk′Ui − λλ′Ufi(H ′ − U)fi

= kk′ + λ(k′H + λ′uG− λ′uH)− λk′Ui = kk′ + λλ′u(G− Ui).

Assume i = j and a ̸= b. By (11) and (12),∑
(m,p)∈∆

M(i,a),(m,p)M
(−1)
(i,b),(m,p) =

∑
1≤p≤t′

∑
1≤m≤t

W fi
ap(DimD

(−1)
im )(W

(−1)
bp )fi

=
∑

1≤p≤t′

W fi
ap(k + λ(H − Ui))(W

(−1)
bp )fi

= k
∑

1≤p≤t′

(WapW
(−1)
bp )fi + λ

∑
1≤p≤t′

H(WapW
(−1)
bp )fi − λ

∑
1≤p≤t′

UfiW fi
ap(W

(−1)
bp )fi

= uλλ′(H ′)fi + λH(λ′H ′)fi − λUfi(λ′H ′)fi = λλ′uG.

Assume i ̸= j. We note that |W fi
ap| = [G : H] = s′. If xfi ̸= yfi ∈ W fi

ap, then

xfi(yfi)(−1) ̸∈ Ufi = Ui. On the other hand (H ′)fi ∩H = Ui. Hence W fi
ap is a

complete set of coset representatives of G/H. Consequently, W fi
apH = G.

By (10),∑
(m,p)∈∆

M(i,a),(m,p)M
(−1)
(j,b),(m,p) =

∑
1≤p≤t′

∑
1≤m≤t

W fi
apDimD

(−1)
jm (W

(−1)
bp )fj

=
∑

1≤p≤t′

W fi
ap(λH)(W

(−1)
bp )fj

= λ
∑

1≤p≤t′

HW fi
ap(W

(−1)
bp )fj

= λ
∑

1≤p≤t′

G(W
(−1)
bp )fj = λt′s′G = λλ′uG.

Thus [M(i,ℓ),(j,m) ] is a GH(ss′, u, uλλ′) matrix over G and so (i) holds.

To prove (ii) we consider (M (−1))T .∑
(i,ℓ)∈∆

M
(−1)
(i,ℓ),(j1,m1)

M(i,ℓ),(j2,m2)

=
∑

(i,ℓ)∈∆

(W fi
ℓm1

Dij1)
(−1)(W fi

ℓm2
Dij2)

=
∑

1≤i≤t

∑
1≤ℓ≤t′

D
(−1)
ij1

(W
(−1)
ℓm1

Wℓm2)
fiDij2 . (16)
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By Corollary 3.11,∑
1≤i≤t′

W
(−1)
i,m1

Wi,m2 =

{
k′ + λ′(H ′ − U) if m1 = m2,

λ′H ′ otherwise.
(17)

By (16) and (17),∑
(i,ℓ)∈∆

M
(−1)
(i,ℓ),(j1,m1)

M(i,ℓ),(j2,m2)

=

{∑
1≤i≤t D

(−1)
ij1

(k′ + λ′(H ′ − U)fi)Dij2 if m1 = m2,∑
1≤i≤t D

(−1)
ij1

(λ′H ′)fiDij2 otherwise.
(18)

As [H : Ui] = |Dij | = s, by (11)Dij is a complete set of left coset representatives
of H/Ui. Hence UiDij = H. By assumption, |G| = |H| · |H ′|/|H ∩ H ′| and
|G| = |H| · |(H ′)fi |/|H ∩ (H ′)fi |. Hence |H ∩ (H ′)fi | = |H ∩ H ′| = |U | = u.
It follows that [G : (H ′)fi ] = s and (H ′)fi ∩H = Ui. Thus, if d1d

−1
2 ∈ (H ′)fi

for some d1, d2 ∈ Dij , then d1d
−1
2 ∈ (H ′)fi ∩ H = Ui, which forces d1 = d2.

Therefore Dij is a complete set of left coset representatives of G/(H ′)fi . In
particular, (H ′)fiDij = G. It follows from (18) that∑

(i,ℓ)∈∆

M
(−1)
(i,ℓ),(j1,m1)

M(i,ℓ),(j2,m2)

=

{
k′
∑

1≤i≤t D
(−1)
ij1

Dij2 + uλλ′G− uλλ′H if m1 = m2,

uλλ′G otherwise.
(19)

By Theorem 3.10, the necessary and sufficient condition for the transversal
design obtained from [M(i,ℓ),(j,m)] to be symmetric is that there exist subgroups
V(j,m), (j,m) ∈ ∆, of G of order u satisfying∑

(i,ℓ)∈Γ

M
(−1)
(i,ℓ),(j1,m1)

M(i,ℓ),(j2,m2)

=

{
kk′ + uλλ′(G− V(j1,m1)) if (j1,m1) = (j2,m2),

uλλ′G otherwise.
(20)

Assume that the transversal design obtained from D⊗W (f1,··· ,ft) is symmet-
ric. We compare (19) with (20). If m1 = m2 and j1 = j2, then kk′ + uλλ′(G−
V(j1,m1)) = k′

∑
1≤i≤t D

(−1)
ij1

Dij1 +uλλ′G−uλλ′H. Hence
∑

1≤i≤t D
(−1)
ij1

Dij1 =

k + λ(H − V(j1,m1)). If m1 = m2 and j1 ̸= j2, then k′
∑

1≤i≤t D
(−1)
ij1

Dij2 +

uλλ′G − uλλ′H = uλλ′G. Hence
∑

1≤i≤t D
(−1)
ij1

Dij2 = λH. By Theorem 3.10
the transversal design obtained from D is symmetric.

Conversely, assume that the transversal design obtained from D is symmet-
ric. Then, by Theorem 3.10 we have∑

1≤i≤t

D
(−1)
ij1

Dij2 =

{
k + λ(H − Vj1) if j1 = j2,

λH otherwise.
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for some subgroups Vj , 1 ≤ j ≤ t of H of order u. Thus, by (19)∑
(i,ℓ)∈Γ

M
(−1)
(i,ℓ),(j1,m1)

M(i,ℓ),(j2,m2)

=


k′(k + λ(H − Vj1)) + uλλ′G− uλλ′H if m1 = m2 and j1 = j2,

k′λH + uλλ′G− uλλ′H if m1 = m2 and j1 ̸= j2,

uλ′λG if m1 ̸= m2.

=

{
kk′ + uλλ′(G− Vj1) if m1 = m2 and j1 = j2,

uλ′λG otherwise.

Therefore, by Theorem 3.10, the transversal design obtained fromD⊗W (f1,··· ,ft)

is symmetric.

Example 5.3. Let W =

 1 0 0
0 1 0
0 0 1

 be a matrix over Z3. Then W is a

generalized Hadamard matrix GH(3, 1) over Z3. Let D = [Dij ] be a GH(3, 3, 2)
matrix over H = ⟨a, b⟩ ≃ Z3 × Z3 in Example 3.6. We define monomorphisms
f1 and f2 from Z3 to H by f1(x) = bx and f2(x) = ax (x ∈ Z3), respectively.
Then, applying Theorem 5.2 repeatedly, D⊗ (⊗n

i=1W )(f1,f2) is a GH(3, 3, 2 ·3n)
matrix over H and the corresponding transversal design is non-symmetric.

Similarly, let D = [Dij ] be a GH(3, 3, 4) matrix over H = ⟨a, b⟩ ≃ Z3 × Z3

in Example 3.7. Using monomorphisms fi (1 ≤ i ≤ 4) from Z3 to H defined
by fi(x) = ax (i = 1, 3) and fi(x) = bx (i = 2, 4) for x ∈ Z3, we obtain
a GH(3, 3, 4 · 3n) matrix D ⊗ (⊗n

i=1W )(f1,··· ,f4) over H. The corresponding
transvesal design TD3n4[4 · 3n+1; 3] is non-symmetric.

As corollaries of Theorem 5.2, we have

Corollary 5.4. Let H1 and H2 be normal subgroups of G satisfying G = H1H2

(the product operation on G), U = H1 ∩ H2, |U | = u. If [Cij ] ∈ Mt1(Z[H1])
is a GH(s1, u, λ1) matrix, t1 = uλ

s1
, over H1 with respect to U and if [Dij ] ∈

Mt2(Z[H2]) is a GH(s2, u, λ2) matrix, t2 = uλ2

s2
, over H2 with respect to U ,

then C ⊗DidU (= [Ci,jDp,q] ((i, p), (j, q) ∈ {1, · · · , t1} × {1, · · · , t2}) is a
GH(s1s2, u, λ1λ2u) matrix over H, where idU denotes the identity map.

Corollary 5.5. Let D = [Dij ] be a t by t GH(s, u, λ) matrix over a group H
with respect to subgroups Ui (1 ≤ i ≤ t) of H and let W = [wℓm] be a generalized
Hadamard matrix GH(u, λ′) over a group U . If there exists monomorphism fi
from U to Ui for each i with 1 ≤ i ≤ t, then D⊗W (f1,··· ,ft) is a GH(s, u, uλλ′)
matrix over H. Moreover, the transversal design obtained from D ⊗W (f1,··· ,ft)

is symmetric if and only if the transversal design obtained from D is symmetric.

Remark 5.6. Corollary 5.4 is a generalization of Davis’ product construction
of semiregular relative difference sets ([3]).

13



6 Construction of GH(s, u, λ) in a subgroup

In this section for a given GH(s, u, λ) matrix over H we construct a GH(s1, u, λ)
matrix over some suitable subgroup N of H of order s1u with s1 | s.

For any subset Y (̸= ∅) of a groupG, Y G denotes the subgroup ofG generated
by the sets g−1Y g with ginG. Y G is called the normal closure of Y in G.

Proposition 6.1. Let [Dij ] be a t by t GH(s, u, λ) matrix over a group H of
order su with respect to subgroups Ui (1 ≤ i ≤ t) of H of order u. Let N be a
subgroup of H satisfying N ≥ ⟨U1

H , · · · , Ut
H⟩. Set |N | = s1u and r = [H : N ]

and choose a complete set of right coset representatives g1, · · · , gr with respect
to N :

H = g1N ∪ g2N ∪ · · · ∪ grN (21)

Define an rt by rt matrix [C(i,ℓ),(j,m)] (1 ≤ i, j ≤ t, 1 ≤ ℓ,m ≤ r) by C(i,ℓ),(j,m) =

N ∩ g−1
ℓ Dijgm. Then [C(i,ℓ),(j,m)] is a GH(s1, u, λ) matrix over N with respect

to U(i,ℓ) = gℓ
−1Uigℓ (1 ≤ i ≤ t, 1 ≤ ℓ ≤ r).

Proof. Let D = (P,B) be a transversal design TDk[u, λ] defined in Theorem 3.5.
Our aim is to apply Theorem 3.2 to the transversal design D with respect to
the subgroup N . By (iv) of Theorem 3.5, each (i, Uig) (1 ≤ i ≤ t, g ∈ H) is a
point class of D. As Ui

H ≤ N , UigℓN = gℓ(gℓ
−1Uigℓ)N = gℓN . Hence, by (21),

each N -orbit on P is of the form (i, gℓN) and it contains the point class (i, Uigℓ).
We choose a point (i, gℓ) (1 ≤ i ≤ t, 1 ≤ ℓ ≤ r) on the N -orbit (i, gℓN). Let
U(i,ℓ) the subgroup corresponding to (i, gℓN). Then U(i,ℓ) = {x ∈ N : (i, gℓ)x ∼
(i, gℓ)} = {x ∈ N : (i, gℓx) ∈ (i, Uigℓ)} = gℓ

−1Uigℓ.
On the other hand, we can choose a block Bj,gm (1 ≤ j ≤ t, 1 ≤ m ≤ r) on

each N -orbit (⊂ B). Since Bj,gm =
∑t

w=1(w,Dwjgm), it follows that {x ∈ N :
(i, gℓ)x ∈ Bj,gm} = {x ∈ N : gℓx ∈ Dijgm} = N ∩ g−1

ℓ Dijgm = C(i,ℓ),(j,m) (1 ≤
i, j ≤ t, 1 ≤ ℓ,m ≤ r). By Theorem 3.2, we have the proposition.

Example 6.2. Let [Dij ] be a GH(6, 3, 4) matrix over H = ⟨a, b⟩ ≃ Z3 × Z6

in Example 3.7. Set N = ⟨U1, U2⟩. Then N = ⟨a, b2⟩ ≃ Z3 × Z3. Then we
have a right coset decomposition H = 1N + bN with respect to N . Hence, by
Proposition 6.1, we have a GH(3,3,4) matrix C = [Cij ] ∈ M4(Z[N ]), where

C =


1 + b2 + a b2 + b4 + ab2 1 + ab4 + b4 a2 + a2b2 + ab2

1 + b2 + a 1 + b2 + a a2b4 + a2 + a 1 + ab4 + b4

1 + a2b4 + b4 a+ ab2 + a2b2 1 + b2 + a2 b2 + b4 + a2b2

ab4 + a+ a2 1 + a2b4 + b4 1 + b2 + a2 1 + b2 + a2

 .

By Proposition 6.1 we have the following.

Proposition 6.3. Let [Dij ] be a t by t GH(s, u, λ) matrix over a group H of
order su with respect to a normal subgroup U of H. Let g1, · · · , gs be a complete
set of coset representatives of H/U . Set C(i,ℓ),(j,m) = U ∩ g−1

ℓ Dijgm. Then the
uλ by uλ matrix [C(i,ℓ),(j,m)] is a generalized Hadamard matrix GH(u, λ) over
U .
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Applying Proposition 6.3 to semiregular relative difference sets we have the
following.

Proposition 6.4. Let R be a (uλ, u, uλ, λ)-difference set in a group G relative
to a subgroup U . We choose any subgroup H containing the normal closure
UG of U in G. Set |H| = us and st = uλ. Let G = g1H ∩ · · · ∩ gtH be a
right coset decomposition with respect to H and set Dij = H ∩ g−1

i Rgj and
Ui = Ugi (1 ≤ i, j ≤ t). Then [Dij ] is the GH(s, u, λ) matrix over H with
respect to Ui, 1 ≤ i ≤ t.

Proof. Since [R] is a 1 by 1 GH(uλ, u, λ) matrix with respect to U , the propo-
sition immediately follows from Proposition 6.1.

Remark 6.5. In Proposition 6.4, (P,B) = (G, {Dh : h ∈ G}) by (2) and each
point class of (P,B) is given by Ux on which a subgroup x−1Ux acts regularly.
Moreover, by Theorem 3.10, (P,B) is symmetric if and only if D(−1)D = uλ+
λ(G− V ) for some subgroup V of G of order u (cf. Proposition 2.6 of [5]).
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