BOUNDS ON CASTELNUOVO-MUMFORD REGULARITY FOR DIVISORS ON RATIONAL NORMAL SCROLLS

CHIKASHI MIYAZAKI

Abstract

The Castelnuovo-Mumford regularity is one of the most important invariants in studying the minimal free resolution of the defining ideals of the projective varieties. There are some bounds on the Castelnuovo-Mumford regularity of the projective variety in terms of the other basic invariants such as dimension, codimension and degree. This paper studies a bound on the regularity conjectured by Hoa, and shows this bound and extremal examples in the case of divisors on rational normal scrolls.

1. Introduction

Let X be a projective scheme of \mathbb{P}_{K}^{N} over an algebraic closed field K. Let $S=K\left[x_{0}, \cdots, x_{N}\right]$ be the polynomial ring and $\mathfrak{m}=\left(x_{0}, \cdots, x_{N}\right)$ be the irrelevant ideal. Then we put $\mathbb{P}_{K}^{N}=\operatorname{Proj}(S)$. We denote by \mathcal{I}_{X} the ideal sheaf of X. Let m be an integer. Then X is said to be m-regular if $\mathrm{H}^{i}\left(\mathbb{P}_{K}^{N}, \mathcal{I}_{X}(m-i)\right)=0$ for all $i \geq 1$. The Castelnuovo-Mumford regularity of $X \subseteq \mathbb{P}_{K}^{N}$, introduced by Mumford by generalizing ideas of Castelnuovo, is the least such integer m and is denoted by $\operatorname{reg}(X)$. The interest in this concept stems partly from the well-known fact that X is m-regular if and only if for every $p \geq 0$ the minimal generators of the $p^{\text {th }}$ syzygy module of the defining ideal I of $X \subseteq \mathbb{P}_{K}^{N}$ occur in degree $\leq m+p$, see, e.g., [4]. It is important to study upper bounds on the Castelnuovo-Mumford regularity for projective schemes in order to describe the minimal free resolutions of the defining ideals.

In what follows, for a rational number $\ell \in \mathbb{Q}$, we write $\lceil\ell\rceil$ for the minimal integer which is larger than or equal to ℓ, and $\lfloor\ell\rfloor$ for the maximal integer which is smaller than or equal to ℓ.

The starting point of our research on the Castelnuovo-Mumford regularity is an inequality $\operatorname{reg}(X) \leq\lceil(\operatorname{deg}(X)-1) / \operatorname{codim}(X)\rceil+1$ for the ACM, that is, arithmetically Cohen-Macaulay, nondegenerate projective variety $X \subseteq$ \mathbb{P}_{K}^{N}, which is a consequence of the Uniform Position Lemma for the generic hyperplane section of the projective curve for the characteristic zero case and

[^0]the corresponding weaker result due to Ballico for the positive characteristic case, see [1, 2]. Moreover, the extremal ACM variety for the bound have been shown to be a variety of minimal degree in $[14,18]$ if its degree is large enough.

In order to study the regularity bounds for the non-ACM projective variety, we introduce the k-Buchsbaum property. Let k be a nonnegative integer. Then X is called k-Buchsbaum if the graded S-module $\mathrm{M}^{i}(X)=\oplus_{\ell \in \mathbb{Z}} \mathrm{H}^{i}\left(\mathbb{P}_{K}^{N}, \mathcal{I}_{X}(\ell)\right)$, which is called the deficiency module or the Hartshorne-Rao module of X, is annihilated by \mathfrak{m}^{k} for $1 \leq i \leq \operatorname{dim}(X)$, see, e.g., $[9,10]$. We call the minimal nonnegative integer n, if it exists, such that X is n-Buchsbaum, as the Ellia-Migliore-Miró Roig number of X and denote it by $k(X)$, see $[3,12]$. Further we define $\tilde{k}(X)$ as the maximal integer k such that all successive hyperplane sections of X, that is, $X \cap L$ with $\operatorname{codim}(X \cap L)=\operatorname{codim}(X)+\operatorname{codim}(L)$ for any linear space L of \mathbb{P}_{K}^{N}, have the k-Buchsbaum property, see [5]. Note that $k(X)<\infty$ if and only if $\tilde{k}(X)<\infty$, which is equivalent to saying that X is locally Cohen-Macaulay and equi-dimensional. In recent years upper bounds on the Castelnuovo-Mumford regularity of a projective variety X have been given by several authors in terms of $\operatorname{dim}(X), \operatorname{deg}(X), \operatorname{codim}(X)$ and $k(X)$, see, e.g., $[6,7,13,16]$. The following bound is the most optimal among the known results. Also, the extremal cases are classified, see, e.g., [3, 12].
Proposition 1.1 (See $[3,16]$). Let X be a nondegenerate irreducible reduced projective variety in \mathbb{P}_{K}^{N} over an algebraically closed field K. Then we have $\operatorname{reg}(X) \leq\lceil(\operatorname{deg}(X)-1) / \operatorname{codim}(X)\rceil+\max \{k(X) \operatorname{dim}(X), 1\}$. Assume that X is not $A C M$ and that $\operatorname{deg}(X) \geq 2 \operatorname{codim}(X)^{2}+\operatorname{codim}(X)+2$. Then the equality holds only if X is a curve on a rational ruled surface.

This motivates us to state a variation of Hoa's conjecture.
Conjecture 1.2 ([12]). Let X be a nondegenerate projective variety in \mathbb{P}_{K}^{N} over an algebraically closed field K. Then we have $\operatorname{reg}(X) \leq\lceil(\operatorname{deg}(X)-$ 1) $/ \operatorname{codim}(X)\rceil+\max \{\tilde{k}(X), 1\}$. Furthermore, assume that X is not $A C M$ and that $\operatorname{deg}(X)$ is large enough. Then the equality holds only if X is a divisor on a rational normal scroll.

We remark that the original Hoa's conjecture takes $\bar{k}(X)$ instead of $\tilde{k}(X)$, where $\bar{k}(X)$ is the maximal integer k such that all successive hypersurface sections of X have the k-Buchsbaum property. The Buchsbaum case, that is, $\tilde{k}(X)=1$, has been proved in $[15,17,19]$.

The purpose of this paper is to prove the conjecture for divisors on rational normal scrolls and to give extremal varieties for all dimensions.
Theorem 1.3. Let X be a nondegenerate irreducible reduced projective variety in \mathbb{P}_{K}^{N} of dimension r over an algebraically closed field K. Put $k=\tilde{k}(X)$. Assume that X is a divisor on a rational normal scroll. Then we have $\operatorname{reg}(X) \leq\lceil(\operatorname{deg}(X)-1) / \operatorname{codim}(X)\rceil+\max \{k, 1\}$. Furthermore, there exist extremal examples for all r and k.

Before proving the inequality and describing the extremal cases for divisors on rational normal scrolls, we prepare the following notations. Let $r \geq 2$ be an integer. Let $\pi: Y=\mathbb{P}(\mathcal{E}) \rightarrow \mathbb{P}_{K}^{1}$ be a projective bundle, where $\mathcal{E}=\mathcal{O}_{\mathbb{P}_{K}^{1}} \oplus \mathcal{O}_{\mathbb{P}_{K}^{1}}\left(-e_{1}\right) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}_{K}^{1}}\left(-e_{r}\right)$ for some $0 \leq e_{1} \leq \cdots \leq e_{r}$. Let Z and F be a minimal section and a fibre respectively. Now we have an embedding of Y in \mathbb{P}_{K}^{N} by a very ample divisor $H=Z+n F\left(n>e_{r}\right)$, where $N=r n+r+n-e_{1}-\cdots-e_{r}$. Then Y is called a rational normal scroll. Let X be a divisor on Y linearly equivalent to $a Z+b F$. If X is nondegenerate, then $\Gamma\left(Y, \mathcal{I}_{X / Y}(1)\right)=\Gamma\left(Y, \mathcal{O}_{Y}((1-a) Z+(n-b) F)\right)=0$. In this case we see that either $a=1$ and $b \geq n+1$, or $a \geq 2$ and $b \geq 1$. Also, we have $\operatorname{codim}(X)=r n+n-e_{1}-\cdots-e_{r}$ and $\operatorname{deg}(X)=(a Z+b F) \cdot(Z+n F)^{r}=$ $a\left(r n-e_{1}-\cdots-e_{r}\right)+b$, because $Z^{r+1}=-e_{1}-\cdots-e_{r}, Z^{r} \cdot F=1$ and $Z^{i} \cdot F^{r+1-i}=0$ for $0 \leq i \leq r-1$. Under the above conditions, we obtain the following classification of the divisor on a rational normal scroll with its Castelnuovo-Mumford regularity having such upper bound.
Theorem 1.4. Let X be a nondegenerate irreducible reduced divisor on a rational normal scroll in \mathbb{P}_{K}^{N} of dimension r constructed as above. Then we have $\operatorname{reg}(X) \leq\lceil(\operatorname{deg}(X)-1) / \operatorname{codim}(X)\rceil+\max \{\tilde{k}(X), 1\}$.

Furthermore, assume that X is not ACM. Then the equality holds if and only if $a \geq 1$ and an $+2 \leq b \leq$ an $+1-(r+1) n-e_{1}-\cdots-e_{r}$.

This result extends that of [12, Theorem 1.3] and give sharp examples for the conjecture. More precisely, the extremal variety X satisfies $\operatorname{codim}(X)=$ $(r+1) n-e_{1}-\cdots-e_{r}, \operatorname{deg}(X)=a\left(r n-e_{1}-\cdots-e_{r}\right)+b, \tilde{k}(X)=k(X)=$ $\left\lfloor\left(b-a_{r}-2\right) /\left(n-e_{r}\right)\right\rfloor-a+1$ and $\operatorname{reg}(X)=\left\lfloor\left(b-a e_{r}-2\right) /\left(n-e_{r}\right)\right\rfloor+2$.

2. Proof of Main Theorem

This section is devoted to the proof of the theorem stated in $\S 1$.
Notations being as in (1.4), our proof starts with calculating the Castelnuovo-Mumford regularity and the Ellia-Migliore-Miró Roig number of the projective variety. Let S be the polynomial ring $\Gamma\left(Y, \mathcal{O}_{Y}(1)\right)$. Note that $\Gamma\left(Y, \mathcal{O}_{Y}(1)\right) \cong \Gamma\left(\mathbb{P}_{K}^{1}, \mathcal{E}(n)\right)$. Since Y is ACM, the deficiency module $\mathrm{M}^{i}(X)$ of X in $\mathbb{P}_{K}^{N}=\operatorname{Proj}(S), 1 \leq i \leq r$, is isomorphic to $\oplus_{\ell \in \mathbb{Z}} \mathrm{H}^{i}\left(Y, \mathcal{I}_{X / Y}(\ell)\right)$ as graded S-modules. Thus we have $\mathrm{M}^{i}(X) \cong$ $\oplus_{\ell \in \mathbb{Z}} \mathrm{H}^{i}\left(Y, \mathcal{O}_{Y}((-a+\ell) Z+(-b+\ell n) F)\right)$ for $1 \leq i \leq r$. Let us calculate the intermediate cohomologies.

Lemma 2.1. Under the above condition, we have
(i) $\mathrm{M}^{1}(X) \cong \oplus_{\ell \in \mathbb{Z}} \mathrm{H}^{1}\left(\mathbb{P}_{K}^{1}, \operatorname{Sym}^{\ell-a}(\mathcal{E}) \otimes \mathcal{O}_{\mathbb{P}_{K}^{1}}(n \ell-b)\right)$,
(ii) $\mathrm{M}^{i}(X)=0$ for $1<i<r$, and
(iii) $\mathrm{M}^{r}(X) \cong \oplus_{\ell \in \mathbb{Z}^{0}} \mathrm{H}^{0}\left(\mathbb{P}_{K}^{1},\left(\operatorname{Sym}^{-\ell+a-r-1}(\mathcal{E})\right)^{\prime} \otimes \mathcal{O}_{\mathbb{P}_{K}^{1}}\left(n \ell-b+e_{1}+\cdots+\right.\right.$ $\left.e_{r}\right)$).

Proof. The assertions immediately follow from [12, (2.13) and (2.14)] and their proofs.

Corollary 2.2. Under the above condition, we have
(i) $\mathrm{M}^{1}(X)_{\ell} \neq 0$ if and only if $a \leq \ell \leq\left\lfloor\left(b-a e_{r}-2\right) /\left(n-e_{r}\right)\right\rfloor$. In particular, $\mathrm{M}^{1}(X) \neq 0$ if and only if $b \geq a n+2$. Furthermore,
(ii) $\mathrm{M}^{r}(X)_{\ell} \neq 0$ if and only if $\left\lceil\left(b-e_{1}-\cdots-e_{r-1}+(r-a) e_{r}\right) /(n-\right.$ $\left.\left.e_{r}\right)\right\rceil \leq \ell \leq a-r-1$. In particular, $\mathrm{M}^{r}(X) \neq 0$ if and only if $b \leq(a-r-1) n+e_{1}+\cdots+e_{r}$.

Proof. Note that $n>e_{r}$. By (2.1)(i), $\mathrm{M}^{1}(X)_{\ell} \neq 0$ if and only if $-a+\ell \geq 0$ and $-b+\ell n \leq e_{r}(-a+\ell)-2$. By (2.1)(iii), $\mathrm{M}^{r}(X)_{\ell} \neq 0$ if and only if $-a+\ell \leq-r-1$ and $-b+\ell n \geq e_{r}(-a+\ell)+r e_{r}-e_{1}-\cdots-e_{r-1}$.

Remark 2.3. From (2.2), X is ACM if and only if $(a-r-1) n+e_{1}+\cdots+$ $e_{r}+1 \leq b \leq a n+1$. If $b \geq a n+2$, then $\mathrm{M}^{j}(X)=0$ for $j \neq 1$, and if $b \leq(a-r-1) n+e_{1}+\cdots+e_{r}$, then $\mathrm{M}^{j}(X)=0$ for $j \neq r$. But both cases are not ACM.

Lemma 2.4. Under the above condition, $\mathrm{H}^{r+1}\left(\mathbb{P}_{K}^{N}, \mathcal{I}_{X}(\ell)\right) \neq 0$ if and only if $\ell \leq a-r-1$ and $\ell \leq\left\lfloor\left(b-2-e_{1}-\cdots-e_{r}\right) / n\right\rfloor$.
Proof. From the short exact sequence $0 \rightarrow H_{*}^{r+1}\left(\mathcal{I}_{X}\right) \rightarrow H_{*}^{r+1}\left(\mathcal{I}_{X / Y}\right) \rightarrow$ $H_{*}^{r+2}\left(\mathcal{I}_{Y}\right) \rightarrow 0$, we see that $H_{*}^{r+1}\left(\mathcal{I}_{X}\right)$ is the kernel of the homomorphism $H^{1}\left(\mathbb{P}_{K}^{1}, \operatorname{Sym}^{-\ell+a-r-1}(\mathcal{E})^{\prime} \otimes \mathcal{O}_{\mathbb{P}_{K}^{1}}\left(n \ell-b+e_{1}+\cdots+e_{r}\right)\right) \rightarrow$ $H^{1}\left(\mathbb{P}_{K}^{1}, \operatorname{Sym}^{-\ell-r-1}(\mathcal{E})^{\prime} \otimes \mathcal{O}_{\mathbb{P}_{K}^{1}}\left(n \ell+e_{1}+\cdots+e_{r}\right)\right)$. Thus $H^{r+1}\left(\mathcal{I}_{X}(\ell)\right) \neq 0$ if and only if $-\ell+a-r-1 \geq 0$ and $n \ell-b+e_{1}+\cdots+e_{r} \leq-2$.
Remark 2.5. The a-invariant of the coordinate ring R of X is defined as $a(R)=\max \left\{\ell \mid\left[\mathrm{H}_{R_{+}}^{\operatorname{dim} R}(R)\right]_{\ell} \neq 0\right\}$. Note that $\mathrm{H}_{R_{+}}^{r+1}(R) \cong \mathrm{H}_{*}^{r+1}\left(\mathbb{P}_{K}^{N}, \mathcal{I}_{X}\right)$. Therefore we have $a(R)=\min \left\{a-r-1,\left\lfloor\left(b-2-e_{1}-\cdots-e_{r}\right) / n\right\rfloor\right\}$.

From now on, we assume that X is not ACM.
Corollary 2.6. Under the above conditions, $k(X)=\left\lfloor\left(b-a e_{r}-2\right) /(n-\right.$ $\left.\left.e_{r}\right)\right\rfloor-a+1$ and $\operatorname{reg}(X)=\left\lfloor\left(b-a e_{r}-2\right) /\left(n-e_{r}\right)\right\rfloor+2$ if $b \geq$ an +2 , and $k(X)=a-r-1-\left\lceil\left(b-e_{1}-\cdots-e_{r-1}+(r-1) e_{r}\right) /\left(n-e_{r}\right)\right\rceil+1$ and $\operatorname{reg}(X)=a, a+1$ if $b \leq(a-r-1) n+e_{1}+\cdots+e_{r}$.
Proof. It immediately follows from (2.1), (2.2), (2.3) and (2.4).
Lemma 2.7. Under the above conditions, we have $\tilde{k}(X)=k(X)$.
Proof. It immediately follows from [8, (2.4)] and (2.1).
Before proving the main theorem, we state a basic fact on the regularity bound.

Proposition 2.8 ([16]). Let X be a nondegenerate projective variety of dimension r with the coordinate ring R. Let s be a fixed integer with $1 \leq$ $s \leq r$. Assume that X is not $A C M$ and that the deficiency module $\mathrm{M}^{i}(X)$ vanishes for any $i \neq s$. Then we have $\operatorname{reg}(X) \leq a(R / h R)+r+1+k(X) \leq$ $\lceil(\operatorname{deg}(X)-1) / \operatorname{codim}(X)\rceil+k(X)$, where h is a general linear form of R

Proof of Theorem 1.4. The inequality $\operatorname{reg}(X) \leq\lceil(\operatorname{deg}(X)-$ 1) $/ \operatorname{codim}(X)\rceil+\tilde{k}(X)$ follows straightforward from (2.3), (2.7) and (2.8).

First, in order to describe when the equality holds, we consider the case $b \leq(a-r-1) n+e_{1}+\cdots+e_{r}$. In this case, the intermediate cohomologies appear only in $\mathrm{M}^{r}(X)$, and we note that $\max \left\{\ell \mid\left[\mathrm{M}^{r}(X)\right]_{\ell} \neq 0\right\}=a-r-1$ by (2.2). Also, we see that $a(R) \leq a-r-1$ by (2.5). If $a(R)=a-r-1$, then $\operatorname{reg}(X)=(a-r-1)+1+r+1=a+1$ and $a(R / h R)=a-r$. If $a(R)<a-r-1$, then $\operatorname{reg}(X)=(a-r-1)+1+r=a$ and $a(R / h R)=a-r-1$. In fact, by the structure of $\mathrm{M}^{r}(X)$, see (2.1), we have $\left[\mathrm{M}^{r}(X) / h \mathrm{M}^{r}(X)\right]_{a-r-1} \neq 0$. In any case, we have $\operatorname{reg}(X)=a(R / h R)+r+1 \leq\lceil(\operatorname{deg}(X)-1) / \operatorname{codim}(X)\rceil+1 \leq$ $\lceil(\operatorname{deg}(X)-1) / \operatorname{codim}(X)\rceil+\tilde{k}(X)$, and the equality holds only if $\tilde{k}(X)=1$, which is the Buchsbaum case and is classified by [15].

Next, for the case $b \geq a n+2$, we see that $\operatorname{reg}(X)=\left\lfloor\left(b-a e_{r}-2\right) /(n-\right.$ $\left.\left.e_{r}\right)\right\rfloor+2$ and $\tilde{k}(X)=\left\lfloor\left(b-a e_{r}-2\right) /\left(n-e_{r}\right)\right\rfloor-a+1$ by (2.6) and (2.7). Thus the equality holds if and only if $\left\lceil\left(a\left(r n-e_{1}-\cdots-e_{r}\right)+b-1\right) /\left((r+1) n-e_{1}-\cdots-\right.\right.$ $\left.\left.e_{r}\right)\right\rceil=a+1$, which is equivalent to saying that $-\left(r n+n-e_{1}-\cdots-e_{r}\right)+1 \leq$ $-n a-\left(r n+n-e_{1}-\cdots-e_{r}\right)+b+1 \leq 0$. Hence the assertion is proved.

Example 2.9 ([11]). Let $Y=\mathbb{P}_{K}^{1} \times \mathbb{P}_{K}^{1} \times \mathbb{P}_{K}^{1}$ be the Segre embedding in \mathbb{P}_{K}^{9}. Let X be an irreducible reduced divisor linearly equivalent to $p_{1}^{*} \mathcal{O}_{\mathbb{P}_{K}^{1}}(a) \otimes$ $p_{2}^{*} \mathcal{O}_{\mathbb{P}_{K}^{1}}(a+b) \otimes p_{3}^{*} \mathcal{O}_{\mathbb{P}_{K}^{1}}(a+2 b)$, where $a \geq 1$ and $b \geq 2$. Then $k(\underset{X}{K})=b$ and $\tilde{k}(X)>b$.

References

[1] E. Arbarello, M. Cornalba, P.A. Griffiths and J. Harris, Geometry of algebraic curves I, Grundlehren der math. Wissenschaften 167, Springer, 1985.
[2] E. Ballico, On singular curves in positive characteristic, Math. Nachr. 141 (1989), $267-273$.
[3] E. Ballico and C. Miyazaki, Generic hyperplane section of curves and an application to regularity bounds in positive characteristic, J. Pure Appl. Algebra 155 (2001), 93 - 103.
[4] D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), $89-133$.
[5] Ph. Ellia and A. Sarti, On codimension two k-Buchsbaum subvarieties of \mathbb{P}^{n}. Commutative algebra and algebraic geometry (Ferrara), 81-92, Lecture Notes in Pure and Appl. Math., 206, Dekker, New York, 1999.
[6] L. T. Hoa, R. Miró Roig and W. Vogel, On numerical invariants of locally CohenMacaulay schemes in \mathbb{P}^{n}, Hiroshima Math. J., 24 (1994), 299 - 316.
[7] L. T. Hoa and C. Miyazaki, Bounds on Castelnuovo-Mumford regularity for generalized Cohen-Macaulay graded rings, Math. Ann. 301 (1995), 587 - 598.
[8] L.T. Hoa and W. Vogel, Castelnuovo-Mumford regularity and hyperplane sections, J. Algebra 163 (1994), 348-365.
[9] J.C. Migliore, Introduction to liaison theory and deficiency modules, Progress in Math. 165, Birkhäuser, 1998.
[10] J.C. Migliore and R.M. Miró Roig, On k-Buchsbaum curves in \mathbb{P}^{3}, Comm. Algebra. 18 (1990), $2403-2422$.
[11] C. Miyazaki, Graded Buchsbaum algebras and Segre products, Tokyo J. Math. 12(1989), $1-20$.
[12] C. Miyazaki, Sharp bounds on Castelnuovo-Mumford regularity, Trans. Amer. Math. Soc. 352 (2000), $1675-1686$.
[13] C. Miyazaki and W. Vogel, Bounds on cohomology and Castelnuovo-Mumford regularity, J. Algebra, 185 (1996), 626 - 642.
[14] U. Nagel, On the defining equations and syzygies of arithmetically Cohen-Macaulay varieties in arbitrary characteristic, J. Algebra 175 (1995), 359 - 372.
[15] U. Nagel, Arithmetically Buchsbaum divisors on varieties of minimal degree, Trans. Amer. Math. Soc. 351 (1999), 4381 - 4409.
[16] U. Nagel and P. Schenzel, Degree bounds for generators of cohomology modules and Castelnuovo-Mumford regularity, Nagoya Math. J. 152 (1998), 153 - 174.
[17] J. Stückrad and W. Vogel, Castelnuovo bounds for certain subvarieties in \mathbb{P}^{n}, Math. Ann. 276 (1987), 341-352.
[18] N. V. Trung and G. Valla, Degree bounds for the defining equations of arithmetically Cohen-Macaulay varieties, Math. Ann. 281 (1988), 209 - 218.
[19] K. Yanagawa, On the regularities of arithmetically Buchsbaum curves, Math. Z. 226 (1997), $155-163$.

Department of Mathematical Sciences, University of the Ryukyus, Nishihara-cho, Okinawa 903-0213 Japan

E-mail address: miyazaki@math.u-ryukyu.ac.jp

[^0]: 1991 Mathematics Subject Classification. Primary 14B15; Secondary 13D45, 13H10, 14M05.

 Key words and phrases. Castelnuovo-Mumford regularity, rational normal scroll.
 Partially supported by Grant-in-Aid for Scientific Research (no. 14540036), Ministry of Education, Science, Sports and Culture, Japan.

