BOUNDS ON CASTELNUOVO-MUMFORD REGULARITY
FOR DIVISORS ON RATIONAL NORMAL SCROLLS

CHIKASHI MIYAZAKI

ABSTRACT. The Castelnuovo-Mumford regularity is one of the most im-
portant invariants in studying the minimal free resolution of the defin-
ing ideals of the projective varieties. There are some bounds on the
Castelnuovo-Mumford regularity of the projective variety in terms of
the other basic invariants such as dimension, codimension and degree.
This paper studies a bound on the regularity conjectured by Hoa, and
shows this bound and extremal examples in the case of divisors on ra-
tional normal scrolls.

1. INTRODUCTION

Let X be a projective scheme of P% over an algebraic closed field K.
Let S = Klzp, -+ ,zy]| be the polynomial ring and m = (x¢, -+ ,xy) be
the irrelevant ideal. Then we put P = Proj(S). We denote by Zx the
ideal sheaf of X. Let m be an integer. Then X is said to be m-regular if
HY{(PY, Zx(m —i)) = 0 for all i > 1. The Castelnuovo-Mumford regularity
of X C P¥, introduced by Mumford by generalizing ideas of Castelnuovo,
is the least such integer m and is denoted by reg(X). The interest in this
concept stems partly from the well-known fact that X is m-regular if and
only if for every p > 0 the minimal generators of the p!* syzygy module of
the defining ideal I of X C }P’% occur in degree < m + p, see, e.g., [4]. It is
important to study upper bounds on the Castelnuovo-Mumford regularity
for projective schemes in order to describe the minimal free resolutions of
the defining ideals.

In what follows, for a rational number ¢ € Q, we write [¢] for the minimal
integer which is larger than or equal to ¢, and [/] for the maximal integer
which is smaller than or equal to £.

The starting point of our research on the Castelnuovo-Mumford regularity
is an inequality reg(X) < [(deg(X) —1)/codim(X )] 4 1 for the ACM, that
is, arithmetically Cohen-Macaulay, nondegenerate projective variety X C
IP’%, which is a consequence of the Uniform Position Lemma for the generic
hyperplane section of the projective curve for the characteristic zero case and
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the corresponding weaker result due to Ballico for the positive characteristic
case, see [1, 2]. Moreover, the extremal ACM variety for the bound have
been shown to be a variety of minimal degree in [14, 18] if its degree is large
enough.

In order to study the regularity bounds for the non-ACM projective
variety, we introduce the k-Buchsbaum property. Let k& be a nonneg-
ative integer. Then X is called k-Buchsbaum if the graded S-module
M{(X) = ®pezH (PR, Zx (¢)), which is called the deficiency module or the
Hartshorne-Rao module of X, is annihilated by m* for 1 < i < dim(X),
see, e.g., [9, 10]. We call the minimal nonnegative integer n, if it exists,
such that X is n-Buchsbaum, as the Ellia-Migliore-Miré Roig number of X
and denote it by k(X), see [3, 12]. Further we define k(X) as the max-
imal integer k£ such that all successive hyperplane sections of X, that is,
X N L with codim(X N L) = codim(X) 4 codim(L) for any linear space
L of P¥, have the k-Buchsbaum property, see [5]. Note that k(X) < oo
if and only if l;:(X ) < oo, which is equivalent to saying that X is locally
Cohen-Macaulay and equi-dimensional. In recent years upper bounds on
the Castelnuovo-Mumford regularity of a projective variety X have been
given by several authors in terms of dim(X), deg(X), codim(X) and k(X),
see, e.g., [6, 7, 13, 16]. The following bound is the most optimal among the
known results. Also, the extremal cases are classified, see, e.g., [3, 12].

Proposition 1.1 (See [3, 16]). Let X be a nondegenerate irreducible reduced
projective variety in P% over an algebraically closed field K. Then we have
reg(X) < [(deg(X) — 1)/codim(X) | + max{k(X)dim(X),1}. Assume that
X is not ACM and that deg(X) > 2 codim(X)? + codim(X) + 2. Then the
equality holds only if X is a curve on a rational ruled surface.

This motivates us to state a variation of Hoa’s conjecture.

Conjecture 1.2 ([12]). Let X be a nondegenerate projective variety in P}
over an algebraically closed field K. Then we have reg(X) < [(deg(X) —
1)/codim(X)] + max{k(X),1}. Furthermore, assume that X is not ACM
and that deg(X) is large enough. Then the equality holds only if X is a
divisor on a rational normal scroll.

We remark that the original Hoa’s conjecture takes k(X ) instead of k(X),
where k(X)) is the maximal integer k such that all successive hypersurface
sections of X have the k-Buchsbaum property. The Buchsbaum case, that
is, k(X) = 1, has been proved in [15, 17, 19].

The purpose of this paper is to prove the conjecture for divisors on rational
normal scrolls and to give extremal varieties for all dimensions.

Theorem 1.3. Let X be a nondegenerate irreducible reduced projective vari-
ety in IP% of dimension r over an algebraically closed field K. Put k = l;:(X)
Assume that X is a divisor on a rational mormal scroll. Then we have
reg(X) < [(deg(X) — 1)/codim(X)| + max{k,1}. Furthermore, there exist
extremal examples for all r and k.
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Before proving the inequality and describing the extremal cases for di-
visors on rational normal scrolls, we prepare the following notations. Let
r > 2 be an integer. Let m : Y = P(€) — P} be a projective bundle, where
& = Opr. @OP}((—el) @---@Op}((—er) for some 0 < e; < --- <e,. Let
Z and F be a minimal section and a fibre respectively. Now we have an
embedding of Y in P¥. by a very ample divisor H = Z+nF (n > e,), where
N=rm+r+n—e;—---—e,. Then Y is called a rational normal scroll. Let
X be a divisor on Y linearly equivalent to aZ + bF. If X is nondegenerate,
then I'(Y, Zx/y (1)) = T'(Y,Oy((1 —a)Z + (n — b)F)) = 0. In this case we
see that either a = 1l and b > n+1,0or a > 2 and b > 1. Also, we have
codim(X)=rn+n—e; —--- —e, and deg(X) = (aZ + bF) - (Z + nF)" =
a(rn —e; — -+ —e.) + b, because 2"t = —e; —--- —¢,, Z" - F =1 and
Z' . F™t1=t = for 0 < i < r — 1. Under the above conditions, we obtain
the following classification of the divisor on a rational normal scroll with its
Castelnuovo-Mumford regularity having such upper bound.

Theorem 1.4. Let X be a nondegenerate irreducible reduced divisor on a
rational normal scroll in IP’% of dimension r constructed as above. Then we
have reg(X) < [(deg(X) — 1)/codim(X)] + max{k(X),1}.

Furthermore, assume that X is not ACM. Then the equality holds if and
onlyifa>1andan+2<b<an+1—(r+1l)n—e — - —e,.

This result extends that of [12, Theorem 1.3] and give sharp examples for
the conjecture. More precisely, the extremal variety X satisfies codim(X) =
(r+1n—e—--—ep, deg(X) =alrn—e; —---—e,) + b, k(X) = k(X) =
[(b—a, —2)/(n—e;)| —a+1and reg(X) = |(b—ae, —2)/(n—e,)] + 2.

2. PROOF OF MAIN THEOREM

This section is devoted to the proof of the theorem stated in §1.

Notations being as in (1.4), our proof starts with calculating the
Castelnuovo-Mumford regularity and the Ellia-Migliore-Miré Roig num-
ber of the projective variety. Let S be the polynomial ring I'(Y, Oy (1)).
Note that T'(Y,Oy (1)) = T'(Pk,&(n)). Since Y is ACM, the deficiency
module MY(X) of X in P¥ = Proj(S), 1 < i < r, is isomorphic
to @eezH'(Y,Zx/y(£)) as graded S-modules. Thus we have M'(X) =
@pezH (Y, Oy ((—a+€)Z + (=b+¢n)F)) for 1 < i < r. Let us calculate the
intermediate cohomologies.

Lemma 2.1. Under the above condition, we have
() MI(X) 2 @, zH (P, Sym'=(£) © Opy (nf b)),

(i) MY(X) =0 for1 <i<r, and

(iii) M;’(X) = @ZGZHO(P}(,(Sym_”“_”_l(é'))'@Op}{(nﬁ—b+€1—I—'--+
er)).

Proof. The assertions immediately follow from [12, (2.13) and (2.14)] and
their proofs. ([l



4 CHIKASHI MIYAZAKI

Corollary 2.2. Under the above condition, we have

(i) MY(X)¢ # 0 if and only if a < £ < [(b—ae, —2)/(n —e,)]. In
particular, MY(X) # 0 if and only if b > an + 2. Furthermore,

(ii) M"(X)g # 0 if and only if [(b—e1 — -+ — €1+ (r —a)e,)/(n —
er)] <€ < a—r—1. In particular, M"(X) # 0 if and only if
b<(a—r—1)n+e+-+e.

Proof. Note that n > e,. By (2.1)(i), M}(X), # 0 if and only if —a +¢ >0
and —b + ¢n < e,(—a + ¢) — 2. By (2.1)(iii), M"(X), # 0 if and only if
—a+l<-r—1land —b+ln>e(—a+¥)+re, —e; — - —ep_1. O

Remark 2.3. From (2.2), X is ACM if and only if (a —r—1)n+e; +---+
er+1<b<an+1. If b > an+2, then M/(X) = 0 for j # 1, and if
b<(a—r—1)n+e +---+e. then M/(X) = 0 for j # r. But both cases
are not ACM.

Lemma 2.4. Under the above condition, H' 1 (PX. Tx (£)) # 0 if and only
ift<a—-r—1landl<|(b—2—e — - —e)/n].

Proof. From the short exact sequence 0 — HI*N(Ix) — H['(Ix/y) —
H'*2(Ty) — 0, we see that H'''(Zx) is the kernel of the homo-
morphism H'(Pk,Sym e m1(&£) © Op1 (ml—b+e + - +e)) —
HY(PL, Sym~“"1(&) & Op1. (nl+ep +---+e-)). Thus HTH(Zx(£)) # 0
ifand only if ¢ 4+a—r—1>0andnf—b+e1+---+e. < 2. O

Remark 2.5. The a-invariant of the coordinate ring R of X is defined as
a(R) = max{¢|[HE"F(R)], # 0}. Note that Hy"'(R) = HL™ (P, Ix).
Therefore we have a(R) = min{fa —r —1,[(b—2—e; —--- —e,)/n]}.

From now on, we assume that X is not ACM.

Corollary 2.6. Under the above conditions, k(X) = [(b— ae, —2)/(n —
er)] —a+1 and reg(X) = [(b—ae, —2)/(n—e;)| +2 if b > an + 2, and

EX)=a—-r—1—[(b—e1—-—e—1+ (r—1)e)/(n—¢€)] +1 and
reg(X) =a,a+1ifb< (a_r_l)n+€1+"'+€r.
Proof. It immediately follows from (2.1), (2.2), (2.3) and (2.4). O

Lemma 2.7. Under the above conditions, we have k(X) = k(X).
Proof. It immediately follows from [8, (2.4)] and (2.1). O

Before proving the main theorem, we state a basic fact on the regularity
bound.

Proposition 2.8 ([16]). Let X be a nondegenerate projective variety of
dimension r with the coordinate ring R. Let s be a fized integer with 1 <
s < r. Assume that X is not ACM and that the deficiency module M*(X)
vanishes for any i # s. Then we have reg(X) < a(R/hR)+r+1+k(X) <
[(deg(X) —1)/codim(X)]| + k(X), where h is a general linear form of R



5

Proof of Theorem 1.4. The inequality reg(X) < [(deg(X) —
1)/codim(X)] + k(X) follows straightforward from (2.3), (2.7) and (2.8).

First, in order to describe when the equality holds, we consider the case
b<(a—r—1)n+e;+---+e,. In this case, the intermediate cohomologies
appear only in M"(X), and we note that max{¢|[M"(X)]; #0} =a—7r—1
by (2.2). Also, we see that a(R) < a—r—1by (2.5). If a(R) = a—r—1, then
reg(X) = (a—r—1)+1+r+1 =a+1land a(R/hR) = a—r. Ifa(R) < a—r—1,
then reg(X) = (a—r—1)+1+4r =a and a(R/hR) = a—r—1. In fact, by the
structure of M"(X), see (2.1), we have [M"(X)/hM"(X)]q—r—1 # 0. In any
case, we have reg(X) = a(R/hR)+1r+1 < [(deg(X) —1)/codim(X)] +1 <
[(deg(X) — 1)/codim(X)] 4 k(X), and the equality holds only if k(X) =1,
which is the Buchsbaum case and is classified by [15].

Next, for the case b > an + 2, we see that reg(X) = |[(b — ae, —2)/(n —
er)|+2and k(X) = | (b—ae,—2)/(n—e,) | —a+1 by (2.6) and (2.7). Thus the

equality holds if and only if [(a(rn—e;—---—e;)+b—1)/((r+1)n—eg—---—
er)| = a+1, which is equivalent to saying that —(rn+n—e;—---—e,)+1 <
—na—(rn+n—e; —---—e,)+b+1<0. Hence the assertion is proved.

O

Example 2.9 ([11]). Let Y = Pk x P} x PL be the Segre embedding in P},
Let X be an irreducible reduced divisor linearly equivalent to p’{OIPﬂ (a) ®
K

P50p1 (a+b) @ p3Op1 (a + 2b), where @ > 1 and b > 2. Then k(X) = b
K K
and k(X) > b.
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