PROJECTIVE CURVES WITH NEXT TO SHARP BOUNDS ON CASTELNUOVO-MUMFORD REGULARITY

CHIKASHI MIYAZAKI

Abstract

This paper is devoted to the study of the next extremal case for a Castelnuovo-type bound $\operatorname{reg} C \leq\lceil(\operatorname{deg} C-1) / \operatorname{codim} C\rceil+$ $\max \{k(C), 1\}$ for the Castelnuovo-Mumford regularity for a nondegenerate projective curve C, where $k(C)$ is an invariant which measures the deficiency of the Hartshorne-Rao module of C. We show that a projective curve with next to the maximal regularity lies on either a Hirzebruch surface or a normal del Pezzo surface

1. Introduction

Let k be an algebraically closed field. Let $\mathbb{P}_{k}^{N}=\operatorname{Proj} S$ be the projective N-space, where S is the polynomial ring of $N+1$ variables over k. For a coherent sheaf \mathcal{F} on \mathbb{P}_{k}^{N} and an integer $m \in \mathbb{Z}, \mathcal{F}$ is said to be m-regular if $\mathrm{H}^{i}\left(\mathbb{P}_{k}^{N}, \mathcal{F}(m-i)\right)=0$ for all $i \geq 1$. For a projective scheme $X \subseteq \mathbb{P}_{k}^{N}, X$ is said to be m-regular if the ideal sheaf \mathcal{I}_{X} is m-regular. The CastelnuovoMumford regularity of $X \subseteq \mathbb{P}_{k}^{N}$ is the least such integer m and is denoted by reg X. It is well-known that X is m-regular if and only if for every $p \geq 0$ the minimal generators of the p th syzygy module of the defining ideal $I(\subseteq S)$ of $X \subseteq \mathbb{P}_{k}^{N}$ occur in degree $\leq m+p$. In this sense, the Castelnuovo-Mumford regularity is one of the important invariants measuring a complexity of the defining ideal of a given projective scheme.

Throughout this paper, a curve is always assumed to be irreducible and reduced. For a rational number $m \in \mathbb{Q}$, we write $\lceil m\rceil$ for the minimal integer which is larger than or equal to m, and $\lfloor m\rfloor$ for the maximal integer which is smaller than or equal to m.

In this paper, we investigate a Castelnuovo-type bound for the Castelnuovo-Mumford regularity for projective curves. If a nondegenerate projective curve C is ACM, that is, the coordinate ring of C is Cohen-Macaulay, then there is a well-known inequality $\operatorname{reg} C \leq\lceil(\operatorname{deg} C-$ $1) / \operatorname{codim} C\rceil+1$. The inequality follows from the fact that $\operatorname{reg} X \leq$ $\lceil(\operatorname{deg} X-1) / \operatorname{codim} X\rceil+1$ for a generic hyperplane section X of C, which is an easy consequence of the Uniform Position Principle, see, e.g. [1, page 115] and [3, page 95], for characteristic zero. This also works for the general

[^0]case, see, e.g., $[14,(1.1)]$ from the property (2.1) of the h-vectors of X. The extremal case is described as a rational normal curve under the assumption $\operatorname{deg} C$ large enough, see [16]. In order to extend a result of Castelnuovotype regularity bound for a (not necessarily ACM) curve, we introduce, as in $[11,12$], an invariant $k(C)$ which measures how far the coordinate ring of C from the Cohen-Macaulay property. For a projective curve $C \subseteq \mathbb{P}_{k}^{N}$, a graded S-module $\mathrm{M}(C)=\mathrm{H}_{*}^{1}\left(\mathcal{I}_{C / \mathbb{P}_{k}^{n}}\right)=\oplus_{\ell \in \mathbb{Z}} \mathrm{H}^{1}\left(\mathbb{P}_{K}^{N}, \mathcal{I}_{C}(\ell)\right)$ is called the Hartshorne-Rao module. Then we define $k(C)$ as the minimal nonnegative integer v such that $\mathfrak{m}^{v} \mathrm{M}(C)=0$. A curve C is ACM if and only if $k(C)=0$. On the other hand, the coordinate ring of C is a Buchsbaum ring if and only if $k(C)=1$. The extremal bound for the Buchsbaum curve, even for higher dimensional case, is also described in $[17,19]$. For the general case, that is, C is a (not necessarily smooth) nondegenerate projective curve, we have an inequality $\operatorname{reg} C \leq\lceil(\operatorname{deg} C-1) / \operatorname{codim} C\rceil+\max \{k(C), 1\}$, see (2.5). Furthermore, the following result (1.1) describes the extremal curve with the Castelnuovo-type maximal regularity from $[3,(3.2)]$, or see $[13,(1.2)]$.

Proposition 1.1. Let $C \subseteq \mathbb{P}_{k}^{N}$ be a nondegenerate projective curve over an algebraically closed field k with char $k=0$. Assume that C is not ACM. If $\operatorname{deg} C \geq(\operatorname{codim} C)^{2}+2 \operatorname{codim} C+2$ and $\operatorname{reg} C=\lceil(\operatorname{deg} C-1) / \operatorname{codim} C\rceil+$ $k(C)$, then C lies on a rational normal surface scroll, that is, a Hirzebruch surface.

The purpose of this paper is to study projective curves with next to sharp bounds of Castelnuovo-type on the Castelnuovo-Mumford regularity.

Theorem 1.2. Let C be a nondegenerate projective curve over an algebraically closed field k with char $k=0$. Assume that C is not ACM, and $\operatorname{deg} C \geq \max \left\{(\operatorname{codim} C)^{2}+4 \operatorname{codim} C+2,13\right\}$. If

$$
\operatorname{reg} C=\left\lceil\frac{\operatorname{deg} C-1}{\operatorname{codim} C}\right\rceil+k(C)-1
$$

then C lies either on a rational normal surface scroll or a normal del Pezzo surface.

Section 2 is devoted to the proof of (1.2). The theorem states that a curve with next to the maximal regularity of Castelnuovo-type corresponds to a divisor on either a rational normal surface scroll or a del Pezzo surface. Invariants of the divisor on a rational normal surface scroll concerning the inequality are calculated to describe the curve with maximal regularity in [13]. On the other hand, a classical del Pezzo surface is defined to be a smooth surface $V\left(\subseteq \mathbb{P}_{k}^{N}\right)$ with $\operatorname{deg} V=\operatorname{codim} V+2$ such that $\omega_{V} \cong \mathcal{O}_{V}(-1)$ is either the blowups of general $d(\leq 6)$ points of \mathbb{P}_{k}^{2} or the 2-uple embbeding of $\mathbb{P}_{k}^{1} \times \mathbb{P}_{k}^{1}$ to \mathbb{P}_{k}^{8}, see, e.g. $[7,(4.7 .1)]$. A (not necessarily smooth) del Pezzo surface is classified by Fujita [4] and [5, (1.9.14)], see, e.g., [5, (1.6.3)] for the definition. In Section 3, we study some examples of divisors on a del Pezzo surface satisfying the equality in (1.2).

2. Proof of the main theorem

Let us introduce the terminology for the zero-dimensional scheme. Let $X \subseteq \mathbb{P}_{k}^{N}$ be a reduced zero-dimensional scheme such that X spans \mathbb{P}_{k}^{N} as k-vector space. Then X is said to be in uniform position if $\mathrm{H}_{Z}(t)=$ $\max \left\{\operatorname{deg} Z, \mathrm{H}_{X}(t)\right\}$ for all t, for any subscheme Z of X, where H_{Z} and H_{X} denote the Hilbert function of Z and X respectively. Let R be the coordinate ring of a zero-dimensional scheme $X \subseteq \mathbb{P}_{k}^{N}$. Let $\underline{h}=\underline{h}(X)=\left(h_{0}, \cdots, h_{s}\right)$ be the h-vector of $X \subseteq \mathbb{P}_{k}^{N}$, where $h_{i}=\operatorname{dim}_{k}[R]_{i}-\operatorname{dim}_{k}[R]_{i-1}$ and s is the largest integer such that $h_{s} \neq 0$. Note that $s=\operatorname{reg} X-1$.

Remark 2.1. For a generic hyperplane section X of a projective curve, $h_{1}+\cdots+h_{i} \geq i h_{1}$ for all $i=1, \cdots, s-1$ by [2]. A generic hyperplane section of a nondegenerate projective curve is in uniform position if char $k=0$, see [1]. If X is in uniform position, then $h_{i} \geq h_{1}$ for $i=1, \cdots, s-1$, see [10, Section 4].

In this section, from now on, let C be a nondegenerate projective curve of \mathbb{P}_{k}^{N+1} and let H be a generic hyplerplane and $X=C \cap H \subseteq H \cong \mathbb{P}_{k}^{N}$. The following result (2.2) describes an extremal bound for the CastelnuovoMumford regularity of the generic hyperplane section of a projective curve $\operatorname{reg} X \leq\lceil(\operatorname{deg} X-1) / N\rceil+1$.
Lemma 2.2. (See $[13,(2.6)])$. Let $X \subseteq \mathbb{P}_{k}^{N}$ be a generic hyperplane section of a nondegenerate projective curve. Assume that X is in uniform position and $\operatorname{deg} X \geq N^{2}+2 N+2$. If the equality $\operatorname{reg} X=\lceil(\operatorname{deg} X-1) / N\rceil+1$ holds, then X lies on a rational normal curve in \mathbb{P}_{k}^{N}.

The extremal bound of the Castelnuovo-Mumford regularity for the generic hyperplane section of projective curve corresponds to a rational normal curve. The following lemma, which is obtained from Castelnuovo theory [8, Section 3], yields that the next extremal one corresponds to an elliptic normal curve.

Lemma 2.3. Let $X \subseteq \mathbb{P}_{k}^{N}$ be a generic hyperplane section of a nondegenerate projective curve. Assume that X is in uniform position and $\operatorname{deg} X \geq N^{2}+4 N+2$. If the equality reg $X=\lceil(\operatorname{deg} X-1) / N\rceil$ holds, then X lies on either a rational normal curve or an elliptic normal curve in \mathbb{P}_{k}^{N} 。

Proof. Let $\left(h_{0}, \cdots, h_{s}\right)$ be the h-vector of the one-dimensional graded ring R. Note that $h_{0}=1, h_{1}=N$ and $\operatorname{deg} X=h_{0}+\cdots+h_{s}$. Suppose that X does not lie either on a rational normal curve or on an elliptic normal curve. Let us show that $h_{2} \geq h_{1}+2$, with keeping in mind the fact $h_{2} \geq h_{1}$ by (2.1). First, let us assume that $h_{2}=h_{1}$, that is, $\operatorname{dim}_{k}[R]_{2}=2 N+1$. Since X is in uniform position, then X is contained in a rational normal curve by $[8,(3.9)]$, which contradicts the hypothesis. Next, let us assume that $h_{2}=h_{1}+1$, that is, $\operatorname{dim}_{k}[R]_{2}=2 N+2$. Since X is in uniform position and $\operatorname{deg} X \geq N^{2}+4 N+2 \geq 2 N+5, X$ lies on a rational normal surface scroll
by $[8,(3.19)]$. This implies that X is contained in an elliptic normal curve by $[8,(3.20)]$, which contradicts the hypothesis. Hence we have $h_{2} \geq h_{1}+2$. Since X is in uniform position, X is of decreasing type, see, e.g., [6]. Hence we have that $h_{i} \geq h_{1}+2$ for all $2 \leq i \leq s-3, h_{s-2} \geq h_{1}+1$ and $h_{s-1} \geq h_{1}$. Thus we have

$$
\begin{aligned}
& \frac{\operatorname{deg} X-1}{N}=\frac{h_{1}+\cdots+h_{s}}{h_{1}} \\
& \quad \geq 1+\overbrace{\frac{N+2}{N}+\cdots+\frac{N+2}{N}}^{s-4}+\frac{N+1}{N}+1+\frac{1}{N}=s-1+\frac{2 s-6}{N}
\end{aligned}
$$

Since $s+1 \geq(\operatorname{deg} X-1) / N$, we see that $N \leq s-3$. Hence we have $\operatorname{deg} X-1 \leq N(s+1) \leq N^{2}+4 N$, which contradicts the hypothesis.

Remark 2.4. In the statement of (1.1), we may take an assumption that $\operatorname{reg} X=\lceil(\operatorname{deg} X-1) / \operatorname{codim} X\rceil+1$ for a generic hyperplane section X of C in place of the equality reg $C=\lceil(\operatorname{deg} C-1) / \operatorname{codim} C\rceil+k(C)$.

Proposition 2.5 ([18]). Let $C \subseteq \mathbb{P}_{k}^{N+1}$ be a nondegenerate projective curve over an algebraically closed field. Assume that C is not ACM. Then

$$
\operatorname{reg} C \leq\left\lceil\frac{\operatorname{deg} C-1}{\operatorname{codim} C}\right\rceil+k(C)
$$

Proof. The assertion is a consequence of [18]. However, in order to use the process in the proof of (1.2), we will give a short proof. Let $X=C \cap H$ be a generic hyperplane section. Let $m=\operatorname{reg} X$. Let $n=k(C)$. From the exact sequence

$$
\begin{array}{rlll}
& \mathrm{H}_{*}^{1}\left(\mathcal{I}_{C / \mathbb{P}_{k}^{N+1}}\right)(-1) & \xrightarrow{h} & \mathrm{H}_{*}^{1}\left(\mathcal{I}_{C / \mathbb{P}_{k}^{N+1}}\right)
\end{array} \rightarrow \mathrm{H}_{*}^{1}\left(\mathcal{I}_{X / H}\right)
$$

where h is a defining equation of H, we have $\mathrm{h}^{2}\left(\mathcal{I}_{\mathcal{C}}(m-2)\right) \leq \mathrm{h}^{2}\left(\mathcal{I}_{\mathcal{C}}(m-1)\right) \leq$ $\cdots \leq 0$ and $\mathrm{H}^{1}\left(\mathcal{I}_{C}(m+n-2)\right)=h \cdot \mathrm{H}^{1}\left(\mathcal{I}_{C}(m+n-3)\right)=\cdots=h^{n} \cdot \mathrm{H}^{1}\left(\mathcal{I}_{C}(m-\right.$ $2))=0$. Hence we obtain reg $C \leq \operatorname{reg} X+n-1 \leq\lceil(\operatorname{deg} X-1) / N\rceil+k(C)=$ $\lceil(\operatorname{deg} C-1) / \operatorname{codim} C\rceil+k(C)$.

Proof of Theorem 1.2. Let C be a nondegenerate projective curve in $\mathbb{P}_{k}^{N+1}=\operatorname{Proj} S$, where S be the polynomial ring and \mathfrak{m} is the irrelevant ideal. Let $X=C \cap H$ be a generic hyperplane section. From the last line of the proof of (2.5), the equality reg $C=\lceil(\operatorname{deg} C-1) / \operatorname{codim} C\rceil+k(C)$ gives either reg $X=\lceil(\operatorname{deg} X-1) / \operatorname{codim} X\rceil+1$ or reg $X=\lceil(\operatorname{deg} X-1) / \operatorname{codim} X\rceil$. By (2.2) and (2.3), X lies on either (i) a rational normal curve, or (ii) an elliptic normal curve. For the case (i), C is contained in a rational normal surface scroll from (1.1) and (2.4). Thus we are done in this case. Let us consider the case (ii). We may assume that X is contained in an elliptic normal curve Z in $H\left(\cong \mathbb{P}_{k}^{N}\right)$. Let $c=\operatorname{codim} C$ and $d=\operatorname{deg} C$. Then $\operatorname{deg} X=d$, $\operatorname{codim} X=c+1$ and $\operatorname{deg} Z=\operatorname{codim} Z+2=c+2$. For $c=1, Z$ is a plane smooth cubic curve. For $c \geq 2, Z$ is generated by quadric equations.

First, we will show that $\Gamma\left(\mathcal{I}_{Z / H}(2)\right) \cong \Gamma\left(\mathcal{I}_{X / H}(2)\right)$ if $c \geq 2$ and $\Gamma\left(\mathcal{I}_{Z / H}(3)\right) \cong \Gamma\left(\mathcal{I}_{X / H}(3)\right)$ if $c=1$. Indeed, for $c \geq 2$, if there exists a hyperquadric Q such that $X \subseteq Q$ and $Z \nsubseteq Q$, then $X \subseteq Z \cap Q$ and $d \leq 2(c+2)$ by Bezout theorem, which contradicts the assumption $d \geq c^{2}+4 c+2$. For the case $c=1$, we obtain an isomorphism $\Gamma\left(\mathcal{I}_{Z / H}(3)\right) \cong \Gamma\left(\mathcal{I}_{X / H}(3)\right)$. In fact, if not, then an inequality $d \leq 3(c+3)$ similarly obtained from Bezout theorem contradicts the assumption $d \geq 13$.

Next, we will show that $\Gamma\left(\mathcal{I}_{C / \mathbb{P}_{k}^{N+1}}(2)\right) \rightarrow \Gamma\left(\mathcal{I}_{X / H}(2)\right)$ is surjective if $c \geq 2$, and $\Gamma\left(\mathcal{I}_{C / \mathbb{P}_{k}^{N+1}}(3)\right) \rightarrow \Gamma\left(\mathcal{I}_{X / H}(3)\right)$ is surjective if $c=1$. Indeed, let $\varphi: \mathrm{H}_{*}^{1}\left(\mathcal{I}_{C / \mathbb{P}_{k}^{N+1}}\right)(-1) \xrightarrow{h} \mathrm{H}_{*}^{1}\left(\mathcal{I}_{C / \mathbb{P}_{k}^{N+1}}\right)$, where $h\left(\in[S]_{1}\right)$ is a linear form defining the hyperplane H. From the exact sequence

$$
\begin{array}{rllll}
& \Gamma_{*}\left(\mathcal{I}_{C / \mathbb{P}_{k}^{N+1}}\right) & \rightarrow & \Gamma_{*}\left(\mathcal{I}_{X / H}\right) \\
\mathrm{H}_{*}^{1}\left(\mathcal{I}_{C / \mathbb{P}_{k}^{N+1}}\right)(-1) \quad \xrightarrow{\varphi} \quad \mathrm{H}_{*}^{1}\left(\mathcal{I}_{C / \mathbb{P}_{k}^{N+1}}\right) & \rightarrow & \mathrm{H}_{*}^{1}\left(\mathcal{I}_{X / H}\right),
\end{array}
$$

we need to prove that $[\operatorname{Ker} \varphi]_{2}=0$ if $c \geq 2$, and $[\operatorname{Ker} \varphi]_{3}=0$ if $c=1$. Then we see that $\Gamma\left(\mathcal{I}_{C / \mathbb{P}_{k}^{N+1}}(2)\right) \rightarrow \Gamma\left(\mathcal{I}_{X / H}(2)\right)$ is surjective if $c \geq 2$, and $\Gamma\left(\mathcal{I}_{C / \mathbb{P}_{k}^{N+1}}(3)\right) \rightarrow \Gamma\left(\mathcal{I}_{X / H}(3)\right)$ is surjective if $c=1$. By the Socle Lemma[9, (3.11)], for a generic linear form $h \in[S]_{1}$ we have $a_{-}(\operatorname{Ker} \varphi)>a_{-}(\operatorname{Coker} \varphi)$, where $\operatorname{Soc}(N)$ is the set of elements of N annihilated by the maximal ideal \mathfrak{m} and $a_{-}(N)=\min \left\{\ell \mid[N]_{\ell} \neq 0\right\}$ for a graded S-module N. Hence we have $a_{-}(\operatorname{Ker} \varphi)>a_{-}\left(\operatorname{Soc}\left(\mathrm{H}_{*}^{1}\left(\mathcal{I}_{X / H}\right)\right)\right)$.

Now let us evaluate $a_{-}\left(\operatorname{Soc}\left(\mathrm{H}_{*}^{1}\left(\mathcal{I}_{X / H}\right)\right)\right.$. Since Z is ACM , we have the short exact sequence

$$
0 \rightarrow \mathrm{H}_{*}^{1}\left(\mathcal{I}_{X / H}\right) \rightarrow \mathrm{H}_{*}^{1}\left(\mathcal{I}_{X / Z}\right) \rightarrow \mathrm{H}_{*}^{2}\left(\mathcal{I}_{Z / H}\right) \rightarrow 0
$$

from the short exact sequence $0 \rightarrow \mathcal{I}_{Z / H} \rightarrow \mathcal{I}_{X / H} \rightarrow \mathcal{I}_{X / Z} \rightarrow 0$. Note that $\mathrm{H}_{*}^{2}\left(\mathcal{I}_{Z / H}\right) \cong \mathrm{H}_{*}^{1}\left(\mathcal{O}_{Z}\right) \cong k$. Now we will investigate the structure of $\mathrm{H}_{*}^{1}\left(\mathcal{I}_{X / Z}\right)$. By Serre duality, $\mathrm{H}_{*}^{1}\left(\mathcal{I}_{X / Z}\right)$ is isomorphic to the dual of $\Gamma_{*}\left(\mathcal{O}_{Z}(X)\right)$. Hence $\operatorname{Soc}\left(\mathrm{H}_{*}^{1}\left(\mathcal{I}_{X / Z}\right)\right)$ is isomorphic to the dual of $\Gamma_{*}\left(\mathcal{O}_{Z}(X)\right) / \mathfrak{m} \Gamma_{*}\left(\mathcal{O}_{Z}(X)\right)$. Let $\mathcal{F}=\mathcal{O}_{Z}(X)$. Since Z is a smooth elliptic curve, we see that $\mathrm{H}^{1}\left(\mathcal{F} \otimes \mathcal{O}_{Z}(m-\right.$ $1))=0$ if $-d-(m-1)(c+2)<0$. In other words, \mathcal{F} is m-regular for $m \geq(c-d+3) /(c+2)$. Let $m=\lceil(c-d+3) /(c+2)\rceil$. Then we see that

$$
\Gamma\left(\mathcal{F} \otimes \mathcal{O}_{Z}(\ell)\right) \otimes \Gamma\left(\mathcal{O}_{Z}(1)\right) \rightarrow \Gamma(\mathcal{F}(\ell+1))
$$

is surjective for $\ell \geq m$ by [15]. Hence we obtain $a_{-}\left(\operatorname{Soc}\left(\mathrm{H}_{*}^{1} \mathcal{I}_{X / Z}\right)\right) \geq-m$. Therefore, if $d \geq 3 c+7$, then $a_{-}\left(\operatorname{Soc}\left(\mathrm{H}_{*}^{1}\left(\mathcal{I}_{X / H}\right)\right)\right) \geq 2$, and if $d \geq 4 c+$ 9 , $a_{-}\left(\operatorname{Soc}\left(\mathrm{H}_{*}^{1}\left(\mathcal{I}_{X / H}\right)\right)\right) \geq 3$. Since $d \geq \max \left\{c^{2}+4 c+2,13\right\}$, we obtain $[\operatorname{Ker} \varphi]_{2}=0$ if $c \geq 2$ and $[\operatorname{Ker} \varphi]_{3}=0$ if $c=1$.

For the case $c \geq 2$, we have a surjective map $\Gamma\left(\mathcal{I}_{C / \mathbb{P}_{k}^{N+1}}(2)\right) \rightarrow$ $\Gamma\left(\mathcal{I}_{X / H}(2)\right) \cong \Gamma\left(\mathcal{I}_{Z / H}(2)\right)$. Note that Z is the intersection of the hyperquadrics containing X. Let Y^{\prime} be the intersection of the hyperquadrics containing C. Since $Y^{\prime} \cap H=Z$, there is an irreducible component Y of Y^{\prime} such that $Y \cap H=Z$. For the case $c=1$, we are similarly done as
$c \geq 2$. Thus there exists a surface Y containing C such that $Y \cap H=Z$ and $\operatorname{deg} Y=\operatorname{codim} Y+2$. Since a hyperplane section is an elliptic normal curve, Y is a normal surface. By [5, (1.6.5)], Y must be a normal del Pezzo surface.

Remark 2.6. Although I do not have counterexamples for the main theorem without the degree condition, the assumption $\operatorname{deg} C \gg 0$ seems to be indispensable. In fact, a non-hyperelliptic curve of genus $g \geq 5$ with the canonical embedding satisfies the extremal bound for ACM case, but is not in a surface of minimal degree, see [19, page 160]. Moreover, there is a counterexample for (2.2) without degree condition, see [13, (2.6)].

3. Examples

Before studying a curve on a del Pezzo surface, we describe a curve on a rational normal surface scroll with next to the extremal regularity. The proof is similar as $[13,(1.5)]$.
Example 3.1. Let $\pi: V=\mathbb{P}(\mathcal{E}) \rightarrow \mathbb{P}_{k}^{1}$ be a projective bundle, where $\mathcal{E}=\mathcal{O}_{\mathbb{P}_{K}^{1}} \oplus \mathcal{O}_{\mathbb{P}_{k}^{1}}(-e)$ for some $e \geq 0$. Let Z be a minimal section of π corresponding to the natural map $\mathcal{E} \rightarrow \mathcal{O}_{\mathbb{P}_{k}^{1}}(-e)$ and F be a fibre corresponding to $\pi^{*} \mathcal{O}_{\mathbb{P}_{k}^{1}}(1)$. We have an embedding of V in \mathbb{P}_{K}^{N} by a very ample sheaf corresponding to a divisor $H=Z+n \cdot F(n>e)$, where $N=2 n-e+1$. Let C be a divisor C on V linearly equivalent to $a \cdot Z+b \cdot F$ such that $a \geq 1$ and $(a+2) n-e+2 \leq b \leq(a+2) n-e+1+(2 n-e)$. Then we see that $\operatorname{reg} C=\lceil(\operatorname{deg} C-1) / \operatorname{codim} C\rceil+k(C)-1$.

In particular, in case, $e=0$, that is, $V\left(\cong \mathbb{P}_{k}^{1} \times \mathbb{P}_{k}^{1}\right)$ is a smooth quadric surface in \mathbb{P}_{k}^{3}. Let C be a divisor on V of type (a, b). The curve C satisfies the next extremal bound if and only if $4 \leq|b-a| \leq 5$. So, there exists curves with next extremal bound even if the genus $(a-1)(b-1)$ is higher.

Now, we will study projective curves on some smooth del Pezzo surfaces with next to the extremal regularity.

Example 3.2. Let $V=\mathbb{P}_{k}^{1} \times \mathbb{P}_{k}^{1}$. Let π_{1} and π_{2} be the first and second projection respectively. We write $\mathcal{O}_{V}(a, b)$ for $\pi_{1}^{*} \mathcal{O}_{V}(a) \otimes \pi_{2}^{*} \mathcal{O}_{V}(b)$. Let Z_{1} and Z_{2} be divisors corresponding to $\mathcal{O}_{V}(1,0)$ and $\mathcal{O}_{V}(0,1)$ respectively. We have a 2 -uple embedding of V by $H=2 Z_{1}+2 Z_{2}$. Then V is a del Pezzo surface of degree 8 in \mathbb{P}_{k}^{8}. Let C be a divisor on V linearly equivalent to $a \cdot Z_{1}+b \cdot Z_{2}$. We may assume $a \leq b$. By calculating the cohomologies $\mathrm{H}^{i}\left(\mathcal{I}_{C / V}(\ell H)\right) \cong \mathrm{H}^{i}\left(\mathcal{O}_{V}(-a+2 \ell,-b+2 \ell)\right), i=1,2$, by Künneth formula, we see that $\left[\mathrm{H}^{1}\right]_{\ell} \neq 0$ if and only if $a / 2 \leq \ell \leq(b-2) / 2$, and $\left[\mathrm{H}^{2}\right]_{\ell} \neq 0$ if and only if $\ell \leq(a-2) / 2$. Assume that C is not ACM. Then we have $b \geq a+2$. In this case, we have $k(C)=\lfloor b / 2\rfloor-\lceil a / 2\rceil$, and reg $C=\lfloor b / 2\rfloor+1$. Also, we have $\operatorname{deg} C=2 a+2 b$. Thus there exists a curve C on V satisfying $\operatorname{reg} C=\lceil(\operatorname{deg} C-1) / 7\rceil+k(C)-1$ by choosing a and b such that $\lceil(a+4) / 2\rceil=$ $\lceil(2 a+2 b-1) / 7\rceil$, while there are no such curves for $k(C)$ large enough.

Example 3.3. Let $\pi: V=\mathbb{P}(\mathcal{E}) \rightarrow \mathbb{P}_{k}^{1}$ be a projective bundle, where $\mathcal{E}=\mathcal{O}_{\mathbb{P}_{k}^{1}} \oplus \mathcal{O}_{\mathbb{P}_{k}^{1}}(-1)$. Let Z be a minimal section of π corresponding to the natural map $\mathcal{E} \rightarrow \mathcal{O}_{\mathbb{P}_{k}^{1}}(-1)$ and F be a fibre corresponding to π. We have an embedding of V in \mathbb{P}_{k}^{8} by a very ample sheaf corresponding to a divisor $H=2 \cdot Z+3 \cdot F$. Then V is a del Pezzo surface of degree 8 in \mathbb{P}_{k}^{8}. Let C be a divisor on V linearly equivalent to $a \cdot Z+b \cdot F$. From $[13,(2.12)], \mathrm{H}^{1}\left(V, \mathcal{O}_{V}(\alpha \cdot Z+\beta \cdot F)\right) \neq 0$ if and only if either $\alpha \geq 0$ and $\beta \leq \alpha-2$, or $\alpha \leq-2$ and $\beta \geq \alpha+1$. Thus $\mathrm{H}^{1}\left(\mathcal{I}_{C / V}(\ell H)\right) \neq 0$ if and only if either $a / 2 \leq \ell \leq-a+b-2$ or $-a+b+1 \leq \ell \leq(a-2) / 2$. From [13, $(2.14)], \mathrm{H}^{2}\left(V, \mathcal{O}_{V}(\alpha \cdot Z+\beta \cdot F)\right) \neq 0$ if and only if $\alpha \leq-2$ and $\beta \leq-3$. Thus $\mathrm{H}^{2}\left(\mathcal{I}_{C / V}(\ell H)\right) \neq 0$ if and only if $-a+2 \ell \leq-2$ or $-b+3 \ell \leq-3$. Hence we have $k(C)=b-\lceil 3 a / 2\rceil-1$ for $b \geq 3 a / 2+2$, and $k(C)=\lfloor 3 a / 2\rfloor-b+3$ for $b \leq 3 a / 2+2$. On the other hand, we have reg $C=b-a$ for $b \geq 3 a / 2+2$, reg $C=\lfloor a / 2\rfloor+2$ for $3 a / 2 \leq b \leq 3 a / 2+2$, and $\operatorname{reg} C=\lfloor b / 3\rfloor+2$ for $b \leq 3 a / 2$. Also, we have $\operatorname{deg} C=a+2 b$. For $b \leq 3 a / 2$, the equality reg $C=\lceil(\operatorname{deg} C-1) / 7\rceil+k(C)-1$ is equivalent to saying that $\lfloor 4 b / 3\rfloor=\lceil(a+2 b+6) / 7\rceil+\lfloor 3 a / 2\rfloor$ which does not happen for this case. For $3 a / 2<b<3 a / 2+2$, the equality $\operatorname{reg} C=\lceil(\operatorname{deg} C-1) / 7\rceil+k(C)-1$ is equivalent to saying that $\lceil(8 a-5 b-1) / 7\rceil=0$, which does not happen if $\operatorname{deg} C \geq 79$. For $b \geq 3 a / 2+2$, the equality reg $C=\lceil(\operatorname{deg} C-1) / 7\rceil+k(C)-1$ is equivalent to saying that $\lceil a / 2\rceil=\lceil(a+2 b-15) / 7\rceil$. In this case, there exists a curve C on V satisfying reg $C=\lceil(\operatorname{deg} C-1) / 7\rceil+k(C)-1$ by choosing a and b with $b \geq 3 a / 2+2$ such that $\lceil a / 2\rceil=\lceil(a+2 b-15) / 7\rceil$, while there are no such curves with $k(C)$ large enough.

References

[1] E. Arbarello, M. Cornalba, P.A. Griffiths and J. Harris, Geometry of algebraic curves I, Grundlehren der math. Wissenschaften 167, Springer, 1985.
[2] E. Ballico, On singular curves in positive characteristic, Math. Nachr. 141 (1989), $267-273$.
[3] E. Ballico and C. Miyazaki, Generic hyperplane section of curves and an application to regularity bounds in positive characteristic, J. Pure Appl. Algebra 155 (2001), 93 -103.
[4] T. Fujita, Projective varieties of Δ-genus one, Algebraic and Topological Theories to the memory of Dr. Takehiko Miyata, pp. 149 - 175, 1985.
[5] T. Fujita, Classification theories of polarized varieties, London Math. Soc. Lecture Note Series 155, Cambridge University Press, 1990.
[6] A. Geramita and J.C. Migliore, Hyperplane sections of a smooth curve in \mathbb{P}^{3}, Comm. Algebra 17 (1989), 3129 - 3164.
[7] R. Hartshorne, Algebraic geometry, GTM 52, Springer, 1977.
[8] J. Harris (with D. Eisenbud), Curves in projective space, Les Presses de l'Université de Montréal, 1982.
[9] C. Huneke and B. Ulrich, General hyperplane sections of algebraic varieties, J. Algebraic Geometry 2 (1993), $487-505$.
[10] M. Kreuzer, On the canonical module of a 0-dimensional scheme, Can. J. Math. 46 (1994), 357-379.
[11] J. Migliore, Introduction to liaison theory and deficiency modules, Progress in Math. 165, Birkhäuser, 1998.
[12] J.C. Migliore and R.M. Miró Roig, On k-Buchsbaum curves in \mathbb{P}^{3}, Comm. Algebra. 18 (1990), 2403 - 2422.
[13] C. Miyazaki, Sharp bounds on Castelnuovo-Mumford regularity, Trans. Amer. Math. Soc. 352 (2000), $1675-1686$.
[14] C. Miyazaki, Castelnuovo-Mumford regularity and classical method of Castelnuovo, Kodai Math. J. 29 (2006), 237 - 247.
[15] D. Mumford, Lectures on curves on an algebraic surface, Annals of Math. Studies 59 (1966), Princeton UP.
[16] U. Nagel, On the defining equations and syzygies of arithemetically Cohen-Macaulay varieties in arbitrary characteristic, J. Algebra 175 (1995), 359-372.
[17] U. Nagel, Arithmetically Buchsbaum divisors on varieties of minimal degree, Trans. Amer. Math. Soc. 351 (1999), 4381-4409
[18] U. Nagel and P. Schenzel, Degree bounds for generators of cohomology modules and Castelnuovo-Mumford regularity, Nagoya Math. J. 152 (1998), 153 - 174.
[19] K. Yanagawa, On the regularities of arithmetically Buchsbaum curves, Math. Z. 226 (1997), $155-163$.

Department of Mathematical Sciences, University of the Ryukyus, Nishihara-cho, Okinawa 903-0213, Japan

E-mail address: miyazaki@math.u-ryukyu.ac.jp

[^0]: 1991 Mathematics Subject Classification. Primary 14H45, Secondary 13D02.
 Key words and phrases. Castelnuovo-Mumford regularity, del Pezzo surface.
 Partially supported by Grant-in-Aid for Scientific Research (C) (17540035), Ministry of Education, Culture, Sports, Science and Technology, Japan.

