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Abstract. This paper is devoted to the study of the next extremal
case for a Castelnuovo-type bound regC ≤ d(degC − 1)/codimCe +
max{k(C), 1} for the Castelnuovo-Mumford regularity for a nondegen-
erate projective curve C, where k(C) is an invariant which measures
the deficiency of the Hartshorne-Rao module of C. We show that a
projective curve with next to the maximal regularity lies on either a
Hirzebruch surface or a normal del Pezzo surface.

1. Introduction

Let k be an algebraically closed field. Let PNk = ProjS be the projective
N -space, where S is the polynomial ring of N + 1 variables over k. For a
coherent sheaf F on PNk and an integer m ∈ Z, F is said to be m-regular if
Hi(PNk ,F(m − i)) = 0 for all i ≥ 1. For a projective scheme X ⊆ PNk , X is
said to be m-regular if the ideal sheaf IX is m-regular. The Castelnuovo-
Mumford regularity of X ⊆ PNk is the least such integer m and is denoted by
regX. It is well-known that X is m-regular if and only if for every p ≥ 0 the
minimal generators of the pth syzygy module of the defining ideal I(⊆ S) of
X ⊆ PNk occur in degree ≤ m+ p. In this sense, the Castelnuovo-Mumford
regularity is one of the important invariants measuring a complexity of the
defining ideal of a given projective scheme.
Throughout this paper, a curve is always assumed to be irreducible and

reduced. For a rational numberm ∈ Q, we write dme for the minimal integer
which is larger than or equal to m, and bmc for the maximal integer which
is smaller than or equal to m.
In this paper, we investigate a Castelnuovo-type bound for the

Castelnuovo-Mumford regularity for projective curves. If a nondegen-
erate projective curve C is ACM, that is, the coordinate ring of C is
Cohen-Macaulay, then there is a well-known inequality regC ≤ d(degC −
1)/codimCe + 1. The inequality follows from the fact that regX ≤
d(degX − 1)/codimXe+ 1 for a generic hyperplane section X of C, which
is an easy consequence of the Uniform Position Principle, see, e.g. [1, page
115] and [3, page 95], for characteristic zero. This also works for the general
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case, see, e.g., [14, (1.1)] from the property (2.1) of the h-vectors of X. The
extremal case is described as a rational normal curve under the assumption
degC large enough, see [16]. In order to extend a result of Castelnuovo-
type regularity bound for a (not necessarily ACM) curve, we introduce, as
in [11, 12], an invariant k(C) which measures how far the coordinate ring
of C from the Cohen-Macaulay property. For a projective curve C ⊆ PNk ,
a graded S-module M(C) = H1∗(IC/Pnk ) = ⊕`∈ZH

1(PNK , IC(`)) is called the
Hartshorne-Rao module. Then we define k(C) as the minimal nonnegative
integer v such that mvM(C) = 0. A curve C is ACM if and only if k(C) = 0.
On the other hand, the coordinate ring of C is a Buchsbaum ring if and
only if k(C) = 1. The extremal bound for the Buchsbaum curve, even for
higher dimensional case, is also described in [17, 19]. For the general case,
that is, C is a (not necessarily smooth) nondegenerate projective curve, we
have an inequality regC ≤ d(degC−1)/codimCe+max{k(C), 1}, see (2.5).
Furthermore, the following result (1.1) describes the extremal curve with the
Castelnuovo-type maximal regularity from [3, (3.2)], or see [13, (1.2)].

Proposition 1.1. Let C ⊆ PNk be a nondegenerate projective curve over an
algebraically closed field k with char k = 0. Assume that C is not ACM. If
degC ≥ (codimC)2 + 2 codimC + 2 and regC = d(degC − 1)/codimCe+
k(C), then C lies on a rational normal surface scroll, that is, a Hirzebruch
surface.

The purpose of this paper is to study projective curves with next to sharp
bounds of Castelnuovo-type on the Castelnuovo-Mumford regularity.

Theorem 1.2. Let C be a nondegenerate projective curve over an alge-
braically closed field k with char k = 0. Assume that C is not ACM, and
degC ≥ max{(codimC)2 + 4 codimC + 2, 13}. If

regC =

»
degC − 1
codimC

¼
+ k(C)− 1,

then C lies either on a rational normal surface scroll or a normal del Pezzo
surface.

Section 2 is devoted to the proof of (1.2). The theorem states that a
curve with next to the maximal regularity of Castelnuovo-type corresponds
to a divisor on either a rational normal surface scroll or a del Pezzo surface.
Invariants of the divisor on a rational normal surface scroll concerning the
inequality are calculated to describe the curve with maximal regularity in
[13]. On the other hand, a classical del Pezzo surface is defined to be a
smooth surface V (⊆ PNk ) with deg V = codimV +2 such that ωV ∼= OV (−1)
is either the blowups of general d(≤ 6) points of P2k or the 2-uple embbeding
of P1k × P1k to P8k, see, e.g. [7, (4.7.1)]. A (not necessarily smooth) del Pezzo
surface is classified by Fujita [4] and [5, (1.9.14)], see, e.g., [5, (1.6.3)] for the
definition. In Section 3, we study some examples of divisors on a del Pezzo
surface satisfying the equality in (1.2).
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2. Proof of the main theorem

Let us introduce the terminology for the zero-dimensional scheme. Let
X ⊆ PNk be a reduced zero-dimensional scheme such that X spans PNk
as k-vector space. Then X is said to be in uniform position if HZ(t) =
max{degZ,HX(t)} for all t, for any subscheme Z of X, where HZ and HX
denote the Hilbert function of Z andX respectively. Let R be the coordinate
ring of a zero-dimensional scheme X ⊆ PNk . Let h = h(X) = (h0, · · · , hs)
be the h-vector of X ⊆ PNk , where hi = dimk[R]i − dimk[R]i−1 and s is the
largest integer such that hs 6= 0. Note that s = regX − 1.
Remark 2.1. For a generic hyperplane section X of a projective curve,
h1+· · ·+hi ≥ ih1 for all i = 1, · · · , s−1 by [2]. A generic hyperplane section
of a nondegenerate projective curve is in uniform position if char k = 0, see
[1]. If X is in uniform position, then hi ≥ h1 for i = 1, · · · , s − 1, see [10,
Section 4].

In this section, from now on, let C be a nondegenerate projective curve
of PN+1k and let H be a generic hyplerplane and X = C ∩ H ⊆ H ∼= PNk .
The following result (2.2) describes an extremal bound for the Castelnuovo-
Mumford regularity of the generic hyperplane section of a projective curve
regX ≤ d(degX − 1)/Ne+ 1.
Lemma 2.2. (See [13, (2.6)]). Let X ⊆ PNk be a generic hyperplane section
of a nondegenerate projective curve. Assume that X is in uniform position
and degX ≥ N2 + 2N + 2. If the equality regX = d(degX − 1)/Ne + 1
holds, then X lies on a rational normal curve in PNk .

The extremal bound of the Castelnuovo-Mumford regularity for the
generic hyperplane section of projective curve corresponds to a rational nor-
mal curve. The following lemma, which is obtained from Castelnuovo theory
[8, Section 3], yields that the next extremal one corresponds to an elliptic
normal curve.

Lemma 2.3. Let X ⊆ PNk be a generic hyperplane section of a non-
degenerate projective curve. Assume that X is in uniform position and
degX ≥ N2 + 4N + 2. If the equality regX = d(degX − 1)/Ne holds,
then X lies on either a rational normal curve or an elliptic normal curve in
PNk .

Proof. Let (h0, · · · , hs) be the h-vector of the one-dimensional graded ring
R. Note that h0 = 1, h1 = N and degX = h0 + · · · + hs. Suppose that X
does not lie either on a rational normal curve or on an elliptic normal curve.
Let us show that h2 ≥ h1 + 2, with keeping in mind the fact h2 ≥ h1 by
(2.1). First, let us assume that h2 = h1, that is, dimk[R]2 = 2N + 1. Since
X is in uniform position, then X is contained in a rational normal curve
by [8, (3.9)], which contradicts the hypothesis. Next, let us assume that
h2 = h1+1, that is, dimk[R]2 = 2N +2. Since X is in uniform position and
degX ≥ N2 + 4N + 2 ≥ 2N + 5, X lies on a rational normal surface scroll
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by [8, (3.19)]. This implies that X is contained in an elliptic normal curve
by [8, (3.20)], which contradicts the hypothesis. Hence we have h2 ≥ h1+2.
Since X is in uniform position, X is of decreasing type, see, e.g., [6]. Hence
we have that hi ≥ h1+2 for all 2 ≤ i ≤ s− 3, hs−2 ≥ h1+1 and hs−1 ≥ h1.
Thus we have

degX − 1
N

=
h1 + · · ·+ hs

h1

≥ 1 +

s−4z }| {
N + 2

N
+ · · ·+ N + 2

N
+
N + 1

N
+ 1 +

1

N
= s− 1 + 2s− 6

N
.

Since s + 1 ≥ (degX − 1)/N , we see that N ≤ s − 3. Hence we have
degX − 1 ≤ N(s+ 1) ≤ N2 + 4N , which contradicts the hypothesis.

Remark 2.4. In the statement of (1.1), we may take an assumption that
regX = d(degX− 1)/codimXe+1 for a generic hyperplane section X of C
in place of the equality regC = d(degC − 1)/codimCe+ k(C).
Proposition 2.5 ([18]). Let C ⊆ PN+1k be a nondegenerate projective curve
over an algebraically closed field. Assume that C is not ACM. Then

regC ≤
»
degC − 1
codimC

¼
+ k(C).

Proof. The assertion is a consequence of [18]. However, in order to use the
process in the proof of (1.2), we will give a short proof. Let X = C ∩H be a
generic hyperplane section. Let m = regX. Let n = k(C). From the exact
sequence

H1∗(IC/PN+1k
)(−1) ·h→ H1∗(IC/PN+1k

) → H1∗(IX/H)
→ H2∗(IC/PN+1k

)(−1) ·h→ H2∗(IC/PN+1k
),

where h is a defining equation ofH, we have h2(IC(m−2)) ≤ h2(IC(m−1)) ≤
· · · ≤ 0 and H1(IC(m+n−2)) = h·H1(IC(m+n−3)) = · · · = hn ·H1(IC(m−
2)) = 0. Hence we obtain regC ≤ regX+n−1 ≤ d(degX−1)/Ne+k(C) =
d(degC − 1)/codimCe+ k(C).
Proof of Theorem 1.2. Let C be a nondegenerate projective curve in
PN+1k = ProjS, where S be the polynomial ring and m is the irrelevant
ideal. Let X = C ∩H be a generic hyperplane section. From the last line of
the proof of (2.5), the equality regC = d(degC − 1)/codimCe+ k(C) gives
either regX = d(degX−1)/codimXe+1 or regX = d(degX−1)/codimXe.
By (2.2) and (2.3), X lies on either (i) a rational normal curve, or (ii) an
elliptic normal curve. For the case (i), C is contained in a rational normal
surface scroll from (1.1) and (2.4). Thus we are done in this case. Let us
consider the case (ii). We may assume that X is contained in an elliptic nor-
mal curve Z in H(∼= PNk ). Let c = codimC and d = degC. Then degX = d,
codimX = c+ 1 and degZ = codimZ + 2 = c+ 2. For c = 1, Z is a plane
smooth cubic curve. For c ≥ 2, Z is generated by quadric equations.
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First, we will show that Γ(IZ/H(2)) ∼= Γ(IX/H(2)) if c ≥ 2 and
Γ(IZ/H(3)) ∼= Γ(IX/H(3)) if c = 1. Indeed, for c ≥ 2, if there exists a hyper-
quadric Q such that X ⊆ Q and Z 6⊆ Q, then X ⊆ Z ∩Q and d ≤ 2(c+ 2)
by Bezout theorem, which contradicts the assumption d ≥ c2 + 4c+ 2. For
the case c = 1, we obtain an isomorphism Γ(IZ/H(3)) ∼= Γ(IX/H(3)). In
fact, if not, then an inequality d ≤ 3(c+ 3) similarly obtained from Bezout
theorem contradicts the assumption d ≥ 13.
Next, we will show that Γ(IC/PN+1k

(2)) → Γ(IX/H(2)) is surjective if
c ≥ 2, and Γ(IC/PN+1k

(3)) → Γ(IX/H(3)) is surjective if c = 1. Indeed,

let ϕ : H1∗(IC/PN+1k
)(−1) ·h→ H1∗(IC/PN+1k

), where h(∈ [S]1) is a linear form
defining the hyperplane H. From the exact sequence

Γ∗(IC/PN+1k
) → Γ∗(IX/H)

→ H1∗(IC/PN+1k
)(−1) ϕ→ H1∗(IC/PN+1k

) → H1∗(IX/H),
we need to prove that [Kerϕ]2 = 0 if c ≥ 2, and [Kerϕ]3 = 0 if c = 1.
Then we see that Γ(IC/PN+1k

(2)) → Γ(IX/H(2)) is surjective if c ≥ 2, and
Γ(IC/PN+1k

(3)) → Γ(IX/H(3)) is surjective if c = 1. By the Socle Lemma[9,
(3.11)], for a generic linear form h ∈ [S]1 we have a−(Kerϕ) > a−(Cokerϕ),
where Soc(N) is the set of elements of N annihilated by the maximal ideal
m and a−(N) = min{`|[N ]` 6= 0} for a graded S-module N . Hence we have
a−(Kerϕ) > a−(Soc(H1∗(IX/H))).
Now let us evaluate a−(Soc(H1∗(IX/H))). Since Z is ACM, we have the

short exact sequence

0→ H1∗(IX/H)→ H1∗(IX/Z)→ H2∗(IZ/H)→ 0

from the short exact sequence 0 → IZ/H → IX/H → IX/Z → 0. Note that

H2∗(IZ/H) ∼= H1∗(OZ) ∼= k. Now we will investigate the structure of H1∗(IX/Z).
By Serre duality, H1∗(IX/Z) is isomorphic to the dual of Γ∗(OZ(X)). Hence
Soc(H1∗(IX/Z)) is isomorphic to the dual of Γ∗(OZ(X))/mΓ∗(OZ(X)). Let
F = OZ(X). Since Z is a smooth elliptic curve, we see that H1(F⊗OZ(m−
1)) = 0 if −d − (m − 1)(c + 2) < 0. In other words, F is m-regular for
m ≥ (c− d+ 3)/(c+ 2). Let m = d(c− d+ 3)/(c+ 2)e. Then we see that

Γ(F ⊗OZ(`))⊗ Γ(OZ(1))→ Γ(F(`+ 1))
is surjective for ` ≥ m by [15]. Hence we obtain a−(Soc(H1∗IX/Z)) ≥ −m.
Therefore, if d ≥ 3c + 7, then a−(Soc(H1∗(IX/H))) ≥ 2, and if d ≥ 4c +

9, a−(Soc(H1∗(IX/H))) ≥ 3. Since d ≥ max{c2 + 4c + 2, 13}, we obtain
[Kerϕ]2 = 0 if c ≥ 2 and [Kerϕ]3 = 0 if c = 1.
For the case c ≥ 2, we have a surjective map Γ(IC/PN+1k

(2)) →
Γ(IX/H(2)) ∼= Γ(IZ/H(2)). Note that Z is the intersection of the hyper-
quadrics containing X. Let Y 0 be the intersection of the hyperquadrics
containing C. Since Y 0 ∩ H = Z, there is an irreducible component Y of
Y 0 such that Y ∩ H = Z. For the case c = 1, we are similarly done as
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c ≥ 2. Thus there exists a surface Y containing C such that Y ∩ H = Z
and deg Y = codimY + 2. Since a hyperplane section is an elliptic normal
curve, Y is a normal surface. By [5, (1.6.5)], Y must be a normal del Pezzo
surface.

Remark 2.6. Although I do not have counterexamples for the main theo-
rem without the degree condition, the assumption degC À 0 seems to be
indispensable. In fact, a non-hyperelliptic curve of genus g ≥ 5 with the
canonical embedding satisfies the extremal bound for ACM case, but is not
in a surface of minimal degree, see [19, page 160]. Moreover, there is a
counterexample for (2.2) without degree condition, see [13, (2.6)].

3. Examples

Before studying a curve on a del Pezzo surface, we describe a curve on
a rational normal surface scroll with next to the extremal regularity. The
proof is similar as [13, (1.5)].

Example 3.1. Let π : V = P(E) → P1k be a projective bundle, where
E = OP1K ⊕OP1k(−e) for some e ≥ 0. Let Z be a minimal section of π corre-
sponding to the natural map E → OP1k(−e) and F be a fibre corresponding
to π∗OP1

k
(1). We have an embedding of V in PNK by a very ample sheaf

corresponding to a divisor H = Z + n · F (n > e), where N = 2n − e + 1.
Let C be a divisor C on V linearly equivalent to a ·Z+ b ·F such that a ≥ 1
and (a + 2)n − e + 2 ≤ b ≤ (a + 2)n − e + 1 + (2n − e). Then we see that
regC = d(degC − 1)/codimCe+ k(C)− 1.
In particular, in case, e = 0, that is, V (∼= P1k × P1k) is a smooth quadric

surface in P3k. Let C be a divisor on V of type (a, b). The curve C satisfies
the next extremal bound if and only if 4 ≤ |b − a| ≤ 5. So, there exists
curves with next extremal bound even if the genus (a− 1)(b− 1) is higher.
Now, we will study projective curves on some smooth del Pezzo surfaces

with next to the extremal regularity.

Example 3.2. Let V = P1k × P1k. Let π1 and π2 be the first and second
projection respectively. We write OV (a, b) for π∗1OV (a) ⊗ π∗2OV (b). Let Z1
and Z2 be divisors corresponding to OV (1, 0) and OV (0, 1) respectively. We
have a 2-uple embedding of V by H = 2Z1 + 2Z2. Then V is a del Pezzo
surface of degree 8 in P8k. Let C be a divisor on V linearly equivalent to
a · Z1 + b · Z2. We may assume a ≤ b. By calculating the cohomologies
Hi(IC/V (`H)) ∼= Hi(OV (−a + 2`,−b + 2`)), i = 1, 2, by Künneth formula,

we see that [H1]` 6= 0 if and only if a/2 ≤ ` ≤ (b − 2)/2, and [H2]` 6= 0
if and only if ` ≤ (a − 2)/2. Assume that C is not ACM. Then we have
b ≥ a+2. In this case, we have k(C) = bb/2c−da/2e, and regC = bb/2c+1.
Also, we have degC = 2a+2b. Thus there exists a curve C on V satisfying
regC = d(degC−1)/7e+k(C)−1 by choosing a and b such that d(a+4)/2e =
d(2a+ 2b− 1)/7e, while there are no such curves for k(C) large enough.
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Example 3.3. Let π : V = P(E) → P1k be a projective bundle, where
E = OP1k ⊕ OP1k(−1). Let Z be a minimal section of π corresponding to

the natural map E → OP1k(−1) and F be a fibre corresponding to π. We

have an embedding of V in P8k by a very ample sheaf corresponding to a
divisor H = 2 · Z + 3 · F . Then V is a del Pezzo surface of degree 8 in
P8k. Let C be a divisor on V linearly equivalent to a · Z + b · F . From
[13, (2.12)], H1(V,OV (α · Z + β · F )) 6= 0 if and only if either α ≥ 0 and
β ≤ α − 2, or α ≤ −2 and β ≥ α + 1. Thus H1(IC/V (`H)) 6= 0 if and
only if either a/2 ≤ ` ≤ −a + b − 2 or −a + b + 1 ≤ ` ≤ (a − 2)/2.
From [13, (2.14)], H2(V,OV (α · Z + β · F )) 6= 0 if and only if α ≤ −2
and β ≤ −3. Thus H2(IC/V (`H)) 6= 0 if and only if −a + 2` ≤ −2 or
−b + 3` ≤ −3. Hence we have k(C) = b − d3a/2e − 1 for b ≥ 3a/2 + 2,
and k(C) = b3a/2c − b + 3 for b ≤ 3a/2 + 2. On the other hand, we have
regC = b−a for b ≥ 3a/2+2, regC = ba/2c+2 for 3a/2 ≤ b ≤ 3a/2+2, and
regC = bb/3c+2 for b ≤ 3a/2. Also, we have degC = a+2b. For b ≤ 3a/2,
the equality regC = d(degC − 1)/7e+ k(C)− 1 is equivalent to saying that
b4b/3c = d(a+2b+6)/7e+ b3a/2c which does not happen for this case. For
3a/2 < b < 3a/2 + 2, the equality regC = d(degC − 1)/7e + k(C) − 1 is
equivalent to saying that d(8a − 5b − 1)/7e = 0, which does not happen if
degC ≥ 79. For b ≥ 3a/2+2, the equality regC = d(degC−1)/7e+k(C)−1
is equivalent to saying that da/2e = d(a + 2b − 15)/7e. In this case, there
exists a curve C on V satisfying regC = d(degC − 1)/7e + k(C) − 1 by
choosing a and b with b ≥ 3a/2 + 2 such that da/2e = d(a + 2b − 15)/7e,
while there are no such curves with k(C) large enough.
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