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Anomalous dispersion of the acoustic mode in liquid Bi
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Inelastic x-ray scattering measurements on liquid Bi were carried out. Prominent acoustic mode excitations
were observed in the dynamic structure factor to beyond 12 nm−1, which resolves previously conflicting results as
to their presence beyond 6 nm−1. We find the dispersion curve of the excitation energy with momentum transfer
is nearly flat from 7 to 15 nm−1 consistent with ab initio calculations of liquid Bi [J. Souto et al., Phys. Rev. B
81, 134201 (2010)]. Our ab initio and classical molecular dynamics simulations suggest that a long-range force
is needed to reproduce the flatness of the dispersion curve, and the long-range force is correlated with a local
structure consisting of shorter and longer bonds in the liquid.
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I. INTRODUCTION

Bi is the heaviest stable element. Although the nearest-
neighbor coordination number of approximately 10 is as large
as that of simple liquid metals, the structure factor S(Q) of
liquid Bi, where Q is momentum transfer, exhibits a shoulder
at the high momentum transfer side of the first maximum [1–3],
in contrast to a symmetrical profile of simple liquid metals (see
Fig. 1). Hence, liquid Bi is classified as a nonsimple liquid
metal, as solid Bi is not a metal but a semimetal. The origin of
the shoulder in S(Q) of liquid Bi was theoretically studied and
it was found that a model potential with a ridge in the repulsive
component could reproduce the shoulder [4,5].

Bi belongs to the same group as As in the periodic table,
and the local structure of liquid Bi has been discussed from
a viewpoint of the Peierls distortion. The Peierls distortion is
realized in crystalline As or Bi, whose structures are comprised
of three short and three long bonds in a distorted simple cubic
structure to minimize the energy. Such anisotropic bonding
was observed in liquid As [6], and Peierls distortion has been
investigated in liquid systems [7,8]. An ab initio molecular
dynamics (AIMD) simulation for liquid Bi [9] suggested that
longer and shorter bonds produce a distinct shoulder at the first
peak in S(Q).

The atomic dynamics of liquid Bi was studied by inelastic
neutron scattering (INS) experiments in the 1980s. Dahlborg
and Olsson [10,11] reported no distinct excitation of the
acoustic mode in the dynamic structure factor S(Q,E) at
Q > 6 nm−1, where E is energy transfer. Later, Dzugutov
and Dahlborg [4] also found no distinct excitation of the
acoustic mode at Q > 6 nm−1 with a classical molecular
dynamics simulation, and concluded that this was the result
of the unusual pair potential of liquid Bi. Meanwhile, in 1984,
Shibata et al. [12] reported experimental observation of the
acoustic mode up to 12 nm−1.

Studies of atomic dynamics in liquid Bi have been revisited
more recently. An INS experiment published in 2007 [13] con-
firmed that the inelastic excitations arising from the acoustic
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mode exist only at Q � 6 nm−1. In contrast, an ab initio molec-
ular dynamics (AIMD) simulation by Souto et al. [9] reported
that the inelastic excitation of the acoustic mode survives up
to 14 nm−1. Furthermore, the AIMD simulation predicted
anomalous dispersion of the acoustic mode in liquid Bi with
the excitation energy almost constant from 8 to 17 nm−1. This
behavior is much different from that in simple liquid metals,
where the acoustic mode energy usually exhibits a maximum
approximately at Q half of the first peak position of S(Q) [14].

As described above, the previous INS measurements of
liquid Bi show inconsistency for the inelastic excitation of
the acoustic mode, and these results are also different from
the AIMD prediction that indicates peculiar atomic dynamics
arising from an anisotropic interatomic force in this monatomic
liquid. Hence, it is important to observe the inelastic excitation
of the acoustic mode in liquid Bi using inelastic x-ray
scattering (IXS) because the IXS technique allows us to avoid
the kinematic constraints of neutron scattering and obtain good
spectra out to large energy transfers. The very high photoelec-
tric x-ray absorption of Bi makes IXS experiments somewhat
difficult, however, with modern facilities, they are possible.

We carried out IXS experiments to obtain S(Q,E) of liquid
Bi and determined the dispersion curve of the excitation energy
of the acoustic mode experimentally. Our IXS data then show
clear excitations in S(Q,E) out to at least 12 nm−1. Further,
and consistent with the AIMD simulations of [9], we find a flat
region of the acoustic dispersion curve. We compare our IXS
results with the previous INS measurements, and by comparing
the spectra, arrive at a reasonably consistent picture of the
various data sets. We also present new ab initio and classical
MD simulations, which are compared with experiment, and
with previous calculations. Finally, we discuss our results in
the context of previous work [15–20] and suggest a possible
mechanism for the unusual dispersion of liquid Bi.

II. EXPERIMENTAL PROCEDURE
AND COMPUTER SIMULATION

The experiments were conducted at the high-resolution IXS
beamline (BL35XU) of SPring-8 in Japan [21]. Backscattering
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FIG. 1. (Color online) S(Q) of liquid Bi at 573 K. Open dots and
blue squares denote the result obtained by our own x-ray diffraction
experiments at BL04B2/SPring-8 and the integration of IXS data,
respectively. Also shown are our CMD (solid line) and AIMD (pink
triangles) results. The inset shows S(Q) at Q � 13 nm−1 on an
enlarged scale.

at the Si (11 11 11) reflection provided a beam of approx-
imately 1010 photons/s in an 0.8-meV bandwidth onto the
sample. The energy of the incident beam and the Bragg angle
of the backscattering were 21.747 keV and approximately
89.98◦, respectively. We used 12 spherical analyzer crystals
at the end of the 10-m horizontal arm. The spectrometer
resolution was approximately 1.5 meV depending on the
analyzer crystal, as measured using scattering from polymethyl
methacrylate (PMMA). The Q resolution �Q was set to be
0.45 and 1.0 nm−1 (full width) for Q � 11 and Q > 11 nm−1,
respectively.

Liquid Bi of 99.999% purity was mounted in a single-
crystal sapphire cell of Tamura-type [22] that was carefully
machined to provide a 0.04-mm sample thickness. The cell was
placed in “Marburg” chamber [23]. IXS spectra were measured
at 573 and 1023 K in pure He atmosphere at 0.1 MPa, and here
we focus on the results at 573 K. Several thermodynamic
quantities of Bi at 573 K are tabulated in Table I. Scans
over a range from −30 to 30 meV required 2.5 h each
and we carried out 12 scans at 2 < Q � 6 nm−1 (∼30 h of
data collection), 8 scans at 6 < Q � 11 nm−1, and 4 scans
at 11 < Q � 17 nm−1 and 2 scans at 17 < Q � 32 nm−1

to obtain good quality spectra. Background spectra were
measured at 573 K with an empty cell. After scaling for
sample transmission, the backgrounds were subtracted from
the data, and S(Q,E)/S(Q) were obtained. The weak peak in
the 2.9-nm−1 spectrum at approximately 13 meV is consistent
with the transverse acoustic (TA) mode energy of sapphire
and is due to incomplete background subtraction: the cell

TABLE I. The specific-heat ratio γ [14], mass density ρ [35],
thermal conductivity � [35], heat capacity at the constant pressure Cp

[35], and adiabatic sound velocity cad [36] of liquid Bi at temperature
T . The melting point of Bi is 544 K.

T (K) γ ρ (g/cm3) � [W/(m K)] Cp [J/(g K)] cad (m/s)

573 1.15 10.0 15.5 0.143 1624

position was slightly off center during the sample measurement
and it is probable that the x-ray beam grazed the side of the
sapphire cell.

Figure 1 shows S(Q) at 573 K. S(Q) was measured on
a two-axis diffractometer with a high-temperature furnace
installed at BL04B2/SPring-8. Monochromatized high-energy
x rays of 113 keV were incident on the sample in a glass
capillary of 0.3 mm in inner diameter, and scattered x rays
were detected by a Ge detector. The details of the beamline and
the deduction of structure factor S(Q) from the raw diffraction
data are described in Ref. [24]. We plot the energy integration
of S(Q,E) in Fig. 1. Note that the integration of the IXS
S(Q,E) was adjusted to S(Q) of approximately 0.03 at 8 nm−1.
The integration of S(Q,E) agrees fairly well with S(Q)
obtained by x-ray diffraction up to the vicinity of the S(Q)
maximum.

AIMD simulations were performed using the QUANTUM

ESPRESSO package [25], which is based on the density func-
tional theory, plane waves, and pseudopotentials. The general-
ized gradient approximation (GGA) [26] was adopted for the
exchange-correlation energy. We used the norm-conserving
pseudopotential Bi.pbe-hgh.UPF [27] for the electron-ion
interaction with five valence electrons, 6s26p3. The plane-
wave cutoff energy for the electronic wave functions was
15 Ry. The � point was only used to sample the Brillouin zone
of the MD supercell. We used 128 Bi atoms in a cubic MD cell
with periodic boundary conditions. The length of the side of the
MD cell was 1.6422 nm. The MD simulation was performed
on the ground-state Born-Oppenheimer surface at 573 K for
32 000 steps with a time step of 4.8 fs. Dynamic properties
were calculated by averaging over atomic configurations
of 30 000 steps after the thermodynamic equilibrium was
established. More details may be found in [28]. S(Q) obtained
by our AIMD simulation agrees with that obtained by x-ray
diffraction as shown in Fig. 1. The integration of the IXS
S(Q,E) agrees with the AIMD S(Q) at Q < 11 nm−1 but the
IXS S(Q,E) becomes larger at 12 � Q � 16 nm−1.

We also carried out a classical MD (CMD) simulation at
573 K using the model potential reported in [4] for a system
with 256 particles, and confirmed that S(Q) of liquid Bi
is well reproduced as shown in Fig. 1. To obtain S(Q,E),
the simulation was performed at 573 K for 60 000 steps
with a time step of 2.4 fs. As reported previously [4], no
clear inelastic excitations were visible in the spectra for Q >

6 nm−1: the classical MD simulations reproduce S(Q) but fail
for S(Q,E).

III. RESULTS

Figure 2 shows S(Q,E)/S(Q) of liquid Bi observed at
573 K. The profile at low Q exhibits a central peak with the
acoustic mode clearly visible on each side. The mode disperses
with increasing Q, and S(Q,E)/S(Q) exhibits a prominent
excitation approximately at ±8 meV at Q � 6 nm−1. At
14.6 nm−1, the acoustic excitation is broad but still clearly
visible. Blue curves in Fig. 2 denote S(Q,E)/S(Q) obtained
by our AIMD simulation. In order to compare them with the
IXS results, the AIMD S(Q,E) were obtained by a window
corresponding to the experimental resolution, and the AIMD
S(Q,E)/S(Q) at similar Q values were corrected with the
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FIG. 2. (Color online) S(Q,E)/S(Q) of liquid Bi at 573 K. Q

values are indicated at the left side in the frame. Open circles and
bold solid lines denote experimental results and the fits using the
memory function formalism, respectively. Thin solid curves at the
bottom denote the resolution function. Also shown is S(Q,E)/S(Q)
obtained by our AIMD simulation (blue curves). Q values of the
AIMD curves are indicated at the right side. The IXS data at 2.9 nm−1

exhibit a peak at ±13 meV, due to incomplete background subtraction
(see Sec. II).

detailed balance factor. The quasielastic component of the
AIMD results is systematically higher than the measured one
while the energy integration of AIMD S(Q,E) agrees with
that of the IXS data at low Q, as shown in Fig. 1. A higher
quasielastic peak in the AIMD results was also reported by
Souto et al. [9] where the results were compared with INS [13].
They also obtained the self-diffusion coefficient that agrees
with the lowest experimental data of liquid Bi. These results
hint strongly that the higher quasielastic peak of the AIMD
results in liquid Bi may be related to the well-known fact
that the diffusion coefficient calculated in simulations of small
systems becomes small [29,30]. The inelastic peak position in
the AIMD S(Q,E) is located at slightly higher energy than
that of the IXS, as the shift of the peak position is evidently
observed at 7 < Q < 11 nm−1.

Figure 3 shows the experimental spectra normalized by their
integral and scaled to the x-ray diffraction data at Q = 8 nm−1.
It includes the measured results from Dahlborg and Olsson
[10,11], Sani et al. [13], and Shibata et al. [12]. Although
the energy resolution and energy maximum of each spectrum
is different, the profile of each spectrum qualitatively agrees

with each other. The inelastic component of the INS data
seems to disperse from 4 meV at 3 nm−1 to 7 meV at
11 nm−1. The damping of the collective mode in each S(Q,E)
is approximately similar. However, S(Q,E) of the INS at
Q � 11 nm−1 is truncated at the energy where the inelastic
excitation exists, possibly due to kinematic constraints of
INS. This might have led Dahlborg and Olsson to conclude
that no collective excitation of the acoustic mode exists for
Q > 6 nm−1. In fact, Dahlborg and Olsson actually found an
inelastic excitation in S(Q,E) at higher momentum transfers,
13 and 15 nm−1 (where INS kinematic constraints are less
severe), and attributed it to multiple scattering effects because
of intensity limits of the data. In contrast, the IXS, without
kinematic constraints, and with no multiple scattering, allows
clear spectra to be collected over a large energy range at all
momentum transfers, making it easier to identify the collective
modes.

We analyzed the IXS data using the memory function
formalism for a simple liquid. Although liquid Bi is expected
to have an anisotropic local structure, we assumed that the
formalism can be applied to the experimentally obtained
S(Q,E) that is directionally averaged. The second-order
memory function recently utilized for classical fluids is
represented by the fast (μ) and slow (α) viscous decay and
thermal (th) decay channels [31–34] as

M2(Q,t) = 2�μ δ(t) + [
ω2


(Q) − γω2
0(Q)

]
exp[−t/τα(Q)]

+ (γ − 1)ω2
0(Q) exp(−DthQ

2t), (1)

where γ , ω0(Q), ω
(Q), τα , and Dth are, respectively, the
specific-heat ratio, the normalized second and fourth frequency
moments, the relaxation time of α process, and the thermal
diffusivity Dth = �/(ρCp), where �, ρ, and Cp are the
thermal conductivity, the mass density, and the heat capacity
at the constant pressure. The second frequency moment sum
rule provides the relation ω2

0(Q) = kBT Q2/[mS(Q)], where
m is atomic mass.

We took γ , ρ, �, and Cp, as shown Table I, as determined by
thermodynamic measurements. The model function obtained
by M̃2(Q,iE), the Fourier-Laplace transform of M2(Q,t), is
given by
[
S(Q,E)

S(Q)

]m

= 1

π
Re

[
iE + M̃2(Q,iE)

ω2
0(Q) − E2 + iEM̃2(Q,iE)

]
. (2)

To fit the model function with S(Q,E)/S(Q) experimen-
tally obtained, the function was convoluted with the detailed
balance condition B(E) = (E/kBT )/{1 − exp(−E/kBT )}
and the resolution function R(E) as

S(Q,E)

S(Q)
=

∫
dE′B(E′) y(Q)

[
S(Q,E′)

S(Q)

]m

R(E − E′). (3)

�μ, ω0(Q), ω
(Q), and τα(Q) were optimized to fit
S(Q,E)/S(Q) obtained by IXS, and y(Q) adjusting the
amplitude of S(Q,E)/S(Q) was optimized approximately at
unity.

As shown in Fig. 2 (see also Fig. 6), the optimized model
function reproduced the experimental data nicely. The χ2 per
degrees of freedom is reasonably distributed from 1.2 to 1.8 at
Q � 15 nm−1 but it exceeds 2.0 at higher Q. This is mostly

054206-3



M. INUI et al. PHYSICAL REVIEW B 92, 054206 (2015)

0 5 10 150

0.002
3 nm-1

  Sani et al.
-1

E [meV]

 IXS : 2.9 nm

0 5 10 150

0.002

0.004
  Sani et al. 6 nm

-1

-1 IXS : 5.8 nm

 Shibata et al.

0 5 10 150

0.001

0.002

0.003
5 nm-1

S
(Q

,E
) [

m
eV

   
 ]-1

 IXS : 4.5 nm -1

 Dahlborg & Olsson
  Sani et al.

0 5 10 150

0.2
 Dahlborg & Olsson

 IXS : 25.2 nm -1
25 nm

-1

E [meV]

0 5 10 150

0.02 13nm-1 Dahlborg & Olsson

 IXS : 13.3 nm-1
 Shibata et al. 14 nm-1

0 5 10 150

0.004

11 nm-1
 Dahlborg & Olsson
 IXS : 10.7 nm -1

S
(Q

,E
) [

m
eV

   
 ]

-1

FIG. 3. (Color online) Comparison of the present IXS results to previous INS work. Blue open squares (experimental data) and a blue line
(fits) denote S(Q,E) at 580 K reported by Sani et al. [13], and upside-down triangles denote those by Dahlborg and Olsson [10,11]. S(Q,E)
at 673 K by Shibata et al. [12] is denoted by gray triangles. Q values of these INS results are indicated at the right side in the frame.

because the statistical errors in S(Q,E)/S(Q) became small
at higher Q near the S(Q) maximum and so the fits become
sensitive to small deviations in the model.

The excitation energy of the acoustic mode ωp(Q) was
defined as a peak position of the current-current correlation
function C(Q,E) = E2[S(Q,E)]m/Q2, where [S(Q,E)]m is
the model function before convolution. Figure 4 shows ω0(Q),
ωp(Q), and ω
(Q) of liquid Bi at 573 K. ωp(Q) linearly
disperses up to 7 nm−1 along approximately 2170 m/s, which
is 34% faster than the adiabatic sound speed cad. ωp(Q) at
2.9 � Q � 6 nm−1 is consistent with the previous INS result
reported by Sani et al [13]. ωp(Q) deviates from the linear
dispersion and stays at approximately constant at 8.5 meV at
10 � Q � 15 nm−1. A flat region in the dispersion curve is
consistent with the prediction by the AIMD simulation [9]
although the AIMD results lie at slightly higher energy as
shown in Fig. 4. Our IXS results then qualitatively confirm
the theoretical prediction. A dashed-dotted line in Fig. 4
shows ωp(Q) obtained by our CMD. The dashed-dotted line
at low Q seems to be connected to the line of cad, but black
circles is located at higher energy than the dashed-dotted line
at Q < 10 nm−1. The result suggests that the pair potential
providing a good fit to S(Q) does not properly reproduce the
long-range interatomic interaction in liquid Bi.

For IXS results, the optimized ω
(Q) is slightly smaller
than ωp(Q) at Q < 6 nm−1 although the memory function
formalism requires ω
(Q) � ωp(Q). The result may imply that
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FIG. 4. (Color online) ω
(Q) (open squares), ωp(Q) (black cir-
cles), and ω0(Q) (open triangles) obtained by IXS results at 573 K.
ωp(Q) by AIMD simulations of this study and that at 600 K [9]
is indicated by diamonds and circles with cross, respectively. Also
shown are the excitation energy obtained by INS by Sani et al. (double
circles) and by Shibata et al. (circles with half moon), and CMD
(dashed-dotted line). The ultrasonic sound speed is denoted by a
black line. A broken line denotes ω0(Q) calculated by the sum rule
with experimentally obtained S(Q) shown in Fig. 1.
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ωp(Q) obtained from C(Q,E) at Q < 6 nm−1 overestimates
the real excitation energy [≈ ω
(Q)] due to the broadening of
IXS data.

IV. DISCUSSION

In order to understand the dispersion observed in liquid
Bi, it is useful to consider phonon dispersion in crystalline
(c-)Bi where there is known to be a Peierls distortion. Yarnell
et al. [37] carried out INS on c-Bi and reported the dispersion
curves of the longitudinal and transverse acoustic modes (LA
and TA, respectively) and the optical modes (LO and TO)
along the trigonal and binary directions. They analyzed these
phonon dispersion curves using a linear chain model with two
atoms per unit cell. In the model, they took account of the
interaction of atoms up to the second-neighbor unit cells and
used six force constants to obtain dispersion curves consistent
with the experimental results.

We plot the branches reported by Yarnell et al. [37] in Fig. 5.
ωp(Q) of liquid Bi disperses along the LA dispersion curves
at low Q. The result suggests a possibility that the atomic
dynamics in liquid Bi can be analyzed using a crystal-like
approach that was recently applied to the high-frequency
dynamics of liquid Ga at normal [15] and high pressures
[17], and liquid Na at high pressure [16]. In that work, the
broad quasielastic contribution in S(Q,E) in the liquids was
explained by pure quasielastic and quasitransverse acoustic
components, and these liquids at high pressures show that
a quasitransverse component disperses similarly to the TA
branch of the corresponding crystals at low Q.

Considering the previous studies of a crystalline Bi, we fit
S(Q,E)/S(Q) of liquid Bi using a model function composed
of a single Lorentzian and two damped harmonic oscillators
(DHO) [39]. For comparison, we also carried out the fits using
a single Lorentzian and a single DHO. To obtain the optimized
parameters, y(Q) [ S(Q,E′)

S(Q) ]m in Eq. (3) was replaced with these
model functions.

Figure 6 shows the optimized curve of each model function
and the residuals. The single DHO model could not reproduce
S(Q,E)/S(Q) reasonably for Q > 6 nm−1 and the dual DHO
model was surely needed. In fact, by carrying out Bayesian
analysis [40], we confirmed that the dual DHO model is
validated at 6.6 and 12.0 nm−1 while the single DHO model at
4.3 nm−1. (At Q = 4.3 nm−1, the single and dual DHO models
give essentially identical fits, with the second DHO amplitude
negligibly small: the reduced χ2 per a degree of freedom for
the single DHO fit comes from the reduction in number of
fit parameters.) As plotted in Fig. 5, the excitation energy
of the acoustic mode in the single DHO model (ω − 1DHO)
agrees with ωp(Q) fairly well at low Q but it shifts to lower
energy at Q > 8 nm−1. At 7 < Q < 15 nm−1, the higher
excitation energy ω1 − 2DHO of the dual DHO model shows
an approximately flat dispersion similarly to black circles.

The lower excitation energy of the dual DHO model
ω2 − 2DHO lies at approximately 5 meV near the trigonal
zone boundary. Upon shifting to higher energy at 8 nm−1, it
decreases with further increasing Q. Meanwhile, the previous
AIMD [9] predicted that the transverse acoustic mode in liquid
Bi becomes bimodal for Q � 9 nm−1 and the lower excitation
energy disperses approximately at 2 meV as shown in Fig. 5.

0 10 200

5

10

15

LO

TA

LA

TO

LO

E
 [m

eV
]

trigonal
boundary

binary 
boundary

LA

 ω  -1DHO
 ω  -2DHO
 ω  -2DHO

p
 Souto et al.
 ω

1
2

Ω(Q)

0 10 200

5

10

lin
ew

id
th

 [m
eV

]
Q [nm     ]-1

 2Γ
 2Γ
 2Γ1

2

DHO models

FIG. 5. (Color online) Comparison to measurements of crys-
talline Bi. Bold black and red lines denote dispersion curves of
the longitudinal acoustic (LA) and transverse acoustic (TA), and
longitudinal optical (LO) and transverse optical (TO) modes along
the trigonal direction. LA and LO modes along the binary direction
are denoted by bold blue lines. Broken lines on both side of the LA
and TA modes represent the smearing of the Brillouin zone due to
the disorder estimated from the FWHM of the first peak of S(Q)
[17]. Black circles denote ωp(Q) obtained by the memory function
analysis. The excitation energies obtained by the single DHO model
(blue open squares), and those by the dual DHO model (solid blue
symbols) are shown. The peak energy of the transverse C(E,Q)
reported by Souto et al. at 600 K [9] is denoted by circles with cross.
The dispersion lines of longitudinal and transverse sound speeds [38]
are denoted by black and red lines at 0 � Q � 5 nm−1, respectively.
The optimized dispersion curve �(Q) is denoted by a thin black curve.
The lower panel shows the linewidth of the excitation energies from
DHO models. Black lines at Q � 3 nm−1 and at 8.5 � Q � 11 nm−1

denote FWHM estimated from the solid data, using the same disorder
as mentioned above [17].

The bimodal nature of the transverse acoustic mode was
confirmed by our AIMD. Although the discrepancy between
ω2 − 2DHO and the AIMD transverse acoustic excitation
energy is not neglected at low Q, the discrepancy becomes
small at higher Q. Hence, it will be possible to assign
ω2 − 2DHO as the excitation energy of a quasitransverse
acoustic component. It is also possible to carry out the analysis
assuming the two DHO modes are coupled, as discussed in
[18], and in that case we find reasonable fits can be obtained,
but the values of U are not well determined.

Alternatively, Bryk and Mryglod [19,20] reported the exci-
tation energy that shows Q dependence similar to ω2 − 2DHO.
They investigated collective excitations in liquid Bi within
the nine variable approximations of the generalized collective
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inelastic (magenta and red) components of the DHO model functions are denoted by thin lines. The residuals properly scaled are plotted below
each spectrum. The χ 2 per a degree of freedom for each result is indicated by a red number. At Q � 6.6 nm−1, the residuals in the vicinity of
Q indicated by arrows are reduced by a 2DHO model.

mode (GCM) approach with their CMD simulation. The GCM
analysis provided the excitation energy of the acoustic mode
as the imaginary part of a complex eigenvalue Im(z±

1 ). The
analysis predicted the other three relaxing collective modes
with purely real eigenvalues. Among them, the energy of
the kinetic mode d2 decreases with increasing Q similarly
to ω2 − 2DHO at Q > 7 nm−1. However, as the profile of
the kinetic mode is theoretically modeled by a Lorentzian,
we think that a possibility is small that ω2 − 2DHO corre-
sponds to d2.

The lower panel of Fig. 5 shows the linewidth (2�, see
Ref. [39]) of the collective modes obtained by fitting with a
DHO model. We used a single DHO for Q � 6 nm−1 and a dual
DHO model for higher Q (see Fig. 6 and discussion). These
are compared with an expected linewidth estimated from the
dispersion of the LA and TA modes of the solid, as discussed
in [17]. There, momentum blurring consistent with the width
of the S(Q) maximum of the liquid is assumed to broaden the
modes at very low Q. Here, we find reasonable agreement with
the model of [17] for the longitudinal excitations, but not the
transverse excitations. However, we are also at much higher Q

than [17] so the simple model of broadening suggested there
may not be sufficient.

Here, we mention the relationship between the memory
function analysis and the present crystal-like approach. The
model function of S(Q,E)/S(Q) deduced from Eq. (1) is
expressed by a rational function whose denominator is a
polynomial of degree 4. Using the optimized parameters, we
found that the solution of the polynomial is composed of two
real and one complex conjugate values except for the vicinity
of the S(Q) maximum. The result means that the model
function deduced from the memory function is equivalent to
that with two Lorentzian and one DHO functions. Hence, as
shown in Fig. 6, the optimization with the memory function
analysis is better than that with 1DHO model at Q > 6 nm−1.

As shown in Fig. 5, there is a wide-Q region between
the zone boundaries along the trigonal and binary directions
in c-Bi, and a flat region of the dispersion curve of ωp(Q)
appears between these zone boundaries where LA and LO
branches along the binary direction disperse. This fact hints
that an interaction between the LA and LO branches may be
related to the dispersion curve of ωp(Q) flat in the liquid state.
Here, we consider a one-dimensional model to represent such
an interaction. When a lattice wave of a simple linear chain
model is considered, the phonon energy �(Q) with the Peierls
distortion may be modeled by

�(Q)2 = �2
1[1 − cos(Qa)] + �2

2[1 − cos(2Qa)], (4)

where a, �1, and �2 are a lattice constant, eigenfrequen-
cies determined by first- and second-nearest-neighbor force
constants, respectively. Another interpretation of the force
constants is that �1 and �2 are the intradimer and interdimer
interactions in the Peierls distortion, respectively. This inter-
pretation may be consistent with that the optical mode in the
unit cell with two atoms is taken into account. Interestingly,
Eq. (4) gives a flat dispersion curve when the ratio of �2/�1

is fixed to be 0.5. As shown in Fig. 5, when ωp(Q) obtained
by IXS is fitted up to 19 nm−1 using Eq. (4), �1, �2, and
a are optimized to be 8.98 ps−1, 4.14 ps−1, and 0.306 nm,
respectively. The optimized a is slightly shorter than the first
peak position of the pair distribution function, corresponding
to a shorter bond in liquid Bi [9]. The first component of
Eq. (4) gives the sinusoidal outline of the dispersion curve, and
the curve is flattened by the second component arising from a
medium-range correlation at 2a of approximately 0.6 nm. This
result is consistent with the fact that the long-range interatomic
interaction is needed to reproduce the dispersion curve at low
Q as suggested by our CMD results.

The results of our simple linear chain model should catch an
essential mechanism of the flat dispersion in liquid Bi when
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a pseudo-Brillouin zone concept in a disordered system is
applied [41], and they may be considered as experimental
evidence of the Peierls distortion realized in liquid Bi. A
possible scenario of the Peierls distortion in liquid Bi is that
the layer structure composed of threefold-coordinated atoms
in c-Bi is preserved as layered clusters on melting. Then, the
force constant of strong bonds in the cluster gives �1 while
that of weak bonds between clusters gives �2. The average
distance between adjacent clusters is estimated approximately
twice as large as the intracluster bond distance by considering
a pairing of atoms in a simple cubic structure [8]. From these
considerations, we suggest that the cooperation of short- and
medium-range interatomic interactions with different force
constants is a possible mechanism of the flat region of the
dispersion curve of the acoustic mode observed in liquid Bi.

V. SUMMARY

IXS experiments for liquid Bi clearly show a distinct
inelastic excitation of the acoustic mode observable in S(Q,E)
at Q > 6 nm−1, resolving previous disagreement in the
literature [4,9–13]. The excitation energy of the acoustic mode
obtained by the memory function analysis for the IXS data
behaves similarly to the AIMD simulation [9] and in particular,
has a flat, dispersionless behavior between 7 and 15 nm−1. The
dispersionless behavior is also confirmed by an alternative
analysis of the data using a dual DHO + Lorentzian model.

When a crystal-like approach with the model function
composed of a Lorentzian and two DHO functions is applied
to the IXS data of liquid Bi, the higher excitation energy
of the DHO component, corresponding to the longitudinal
acoustic mode, disperses similarly to that obtained by the
AIMD. The lower-energy DHO component seems consis-
tent with that of the quasitransverse acoustic excitation at
low Q.

Based on the results obtained by the AIMD and CMD
simulations, and our one-dimensional model for the IXS data,
we suggest that the peculiar dispersion of the acoustic mode
observed in liquid Bi may be related to the Peierls distortion in
the crystalline state, where long-range interatomic interaction
plays an important role. Our model also suggests a possibility
that the flat region of the dispersion curve is related to the
optical mode.
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