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Quantum Hall conductance and de Haas–van Alphen oscillation in a tight-binding model
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Quantized Hall conductance and de Haas–van Alphen (dHvA) oscillation are studied theoretically in the
tight-binding model for (TMTSF)2NO3, in which there are small pockets of electrons and holes due to the
periodic potentials of anion ordering in the a direction. The magnetic field is treated by hoppings as complex
numbers due to the phase caused by the vector potential, i.e., Peierls substitution. In realistic values of parameters
and the magnetic field, the energy as a function of the magnetic field (Hofstadter butterfly diagram) is obtained. It
is shown that the energy levels are broadened and the gaps are closed or almost closed periodically as a function
of the inverse magnetic field, which is not seen in the semiclassical theory of the magnetic breakdown. The Hall
conductance is quantized with an integer obtained by the Diophantine equation when the chemical potential lies
in an energy gap. When electrons or holes are doped in this system, the Hall conductance is quantized in some
regions of a magnetic field but it is not quantized in other regions of a magnetic field due to the broadening of
the Landau levels. The amplitude of the dHvA oscillation at zero temperature decreases as the magnetic field
increases, while it is constant in the semiclassical Lifshitz Kosevich formula.
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I. INTRODUCTION

Organic conductors (TMTSF)2X, where TMTSF is tetra-
methyl-tetra-selena-fulvalence and X is an anion (X = NO3,
PF6, ClO4, etc.) [1,2], have the structure of stacked planer
molecules, TMTSF, in the a direction as shown in Fig. 1(a). We
can neglect the hoppings perpendicular to a-b plane, because
they are very small [1]. The energy band structure is well
described [1] by six hopping integrals (tS1, tS2, tI1, tI2, tI3, and
tI4), which are shown in Fig. 1(a). Since the absolute values
of the hoppings in the chain along the a direction are about
ten times larger than those between chains, the Fermi surface
consists of quasi-one-dimensional sheets as shown in Fig. 2(a).

The unit cell of (TMTSF)2NO3 is doubled along the a

direction due to the ordering of the orientation of the anion
NO3 below TAO � 45 K [3–5]. The Brillouin zone is halved
and there appear small electron and hole pockets, as seen in
Fig. 2(b). When the magnetic field (H ) is applied perpendicular
to the a-b plane, the energy of electrons is quantized. In this
case, the de Haas–van Alphen (dHvA) effect [6] is expected.
Fortin and Audourad [7,8] adopt the phenomenological net-
work model [9,10] of a semiclassical theory for the magnetic
breakdown and a semiclassical quantization of energies [11].
In two-dimensional systems, the oscillation of the chemical
potential as a function of a magnetic field cannot be neglected
in general [6,12–15], whereas it is safely neglected in the dHvA
effect in three-dimensional systems as in the Lifshitz-Kosevich
(LK) formula [6,13–20]. Fortin and Audourad [7,8] have
shown that the oscillation of the chemical potential is very
small and the LK formula explains the field and temperature
dependencies of the amplitudes of the dHvA oscillation, if the
effective masses of electrons and holes are nearly the same.

In a tight-binding model, the energy under a magnetic field
can be obtained without a phenomenological parameter for
the probability amplitude of the tunneling, which is used
in the semiclassical theory of the magnetic breakdown. The

quantized Landau levels of the two-dimensional free electrons
are described by delta functions. When periodic potentials
exist or the tight-binding model is used [21,22], the energy
levels are broadened. These energy levels as a function of
the magnetic field are known as the Hofstadter butterfly
diagram [23–25]. The study of the dHvA oscillation has been
done in the tight-binding model [26–30] in systems where a
quasi-one-dimensional Fermi surface and a two-dimensional
Fermi surface coexist. This Fermi surface is suitable to study
the magnetic breakdown in the dHvA oscillation and is
realized, for example, in κ-(BEDT-TTF)2Cu(NCS)2 [1]. Fortin
and Ziman [31] have calculated the dHvA oscillation in a
similar system by using the network model [9,10]. In both
studies, the tight-binding model and the semiclassical network
model, a combination frequency, β − α, has been obtained
due to the chemical potential oscillation as a function of the
magnetic field.

The dHvA oscillation in the tight-binding model [32,33]
for (TMTSF)2NO3 has been studied theoretically. The model
studied previously was, however, a more simplified one and
exaggerated parameter values were used (half-filled band on
the rectangular lattice with tb/ta = 0.6 and t ′b/ta = 0.2, where
ta and tb are the nearest-neighbor hoppings in a and b direc-
tions, respectively, and t ′b is the next-nearest-neighbor hopping
in b direction). On the other hand, the quantum Hall effect in
(TMTSF)2NO3 has never been studied in the actual parameters
in the tight-binding model, as far as we know. The integer
quantum Hall effects in two-dimensional electron systems are
understood as topological phenomena. The quantized value of
the Hall conductance is obtained as a first Chern number or
the solution of the Diophantine equation [34–36].

In this paper, we adopt the tight-binding model with the
realistic parameters for (TMTSF)2NO3 in the magnetic field
treated quantum mechanically. In experimentally accessible
magnetic fields (∼6 T), we obtain an interesting structure of the
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FIG. 1. (a) Schematic side view of (TMTSF)2X. Solid lines are
for TMTSF molecules and dotted lines are transfer integrals [1].
(b) The simplified tight-binding model for (TMTSF)2X in the
rectangular lattice, where 2a and b are the lattice constants (note
that there are two sites (A and B) in the unit cell when V = 0; the
definition of a is a half of that used in Ref. [1]). The unit cell is shown
as the light green rectangle. The transfer integrals (tS1, tS2, tI1, tI2, tI3)
are shown as ovals. The effect of the ordering of the orientation of
the anion NO3 is modeled by the on-site potentials ±V . (c) Transfer
integrals of tI4.

energy as a function of the magnetic field (Hofstadter butterfly
diagram), quantum Hall conductance, and dHvA oscillations.
We show the difference between the results in the quantum-
mechanical theory and those in the semiclassical theory.

II. SPIN-DENSITY WAVE IN (TMTSF)2NO3

The shape and the dimensionality of the Fermi surface in
(TMTSF)2NO3 are controversial at high pressure and strong

(a)

(b)

FIG. 2. (a) Fermi surface at 3/4-filling for V = 0 and the transfer
integrals are tS1 = 274.4, tS2 = 250.5, tI1 = −29.1, tI2 = −42.7,
tI3 = 56.6, and tI4 = −6.3 meV. (b) Fermi surface at 3/4-filling for
V = 12.38 meV. The Brillouin zone is halved (−1/4 < akx/π �
1/4). Black and red curves are electron and hole pockets, respectively.

magnetic fields [4,5]. At the ambient pressure, the spin-
density wave (SDW) [37–40] is stabilized in (TMTSF)2NO3

below TSDW � 9 ∼ 12 K. The wave vector of the SDW has
been observed in NMR experiments [41,42] to be (qx,qy) �
(0,0.25(2π/b)). That vector is indicated by an arrow in
Fig. 2(b), which is a good nesting vector. By applying pressure,
the nesting of the Fermi surface becomes less perfect and SDW
is suppressed. Indeed, a metallic state in the absence of SDW is
reported above 8.5 kbar in the magnetoresistance experiment
by Vignolles et al. [4]. The orientational order of NO3 occurs
even at high pressure. They have shown the difference between
the frequency of the Shubnikov–de Haas (SdH) oscillations
at low pressures and at high pressures (above 8.5 kbar).
They suggested that there exist two-dimensional pockets even
above 8.5 kbar. However, Kang and Chung [5] have observed
that the angular-dependent magnetoresistance oscillations in
(TMTSF)2NO3 at 14 T and pressures of 6.0, 7.0, and 7.8 kbar
are similar to those in (TMTSF)2ClO4. They suggested that
(TMTSF)2NO3 in the metallic state at high pressure has a
quasi-one-dimensional Fermi surface even in the presence of
the anion ordering.

The theoretical study of the angular-dependent magne-
toresistance, however, has been done only semiclassically
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in quasi-one-dimensional systems [43–47] and quasi-two-
dimensional systems [48]. The SdH oscillation has not been
studied quantum mechanically in (TMTSF)2NO3, either. As
we will show below, we study the tight-binding model for
(TMTSF)2NO3 under a magnetic field at T < TAO without
SDW order quantum mechanically and we obtain results that
are not expected in the semiclassical theory. Therefore, in
order to identify the shape and the dimensionality of the Fermi
surface in (TMTSF)2NO3 at high pressures and the in presence
of a magnetic field, we have to compare the experiments with
a theory treated not at the semiclassical level but in quantum
mechanics. Thus our study will be the first step to understand
the shape and the dimensionality of the Fermi surface in
(TMTSF)2NO3, where there are electron and hole pockets in
the absence of magnetic field. Studies in the presence of the
SDW order or under high pressure will be done in the future.

The field-induced spin-density wave (FISDW) has been
also observed in (TMTSF)2NO3 at strong magnetic fields
(∼20 T) and at high pressure (∼8.5 kbar) [4,5]. The FISDW is
caused by electron-electron interactions in similar quasi-one-
dimensional organic conductors such as (TMTSF)2PF6 and
(TMTSF)2ClO4 [49,50]. Since the instabilities of the FISDW
are expected to be strong in (TMTSF)2NO3, a study including
electron-electron interactions needs to be done in the future.

III. ELECTRON AND HOLE POCKETS AT H = 0

Since the direction of the anion is random above TAO,
we can neglect the effects of the anion potential. Then,
the tight-binding model for (TMTSF)2X is described by six
hopping integrals, tS1, tS2, tI1, tI2, tI3, and tI4, which are shown
in Fig. 1 [1]. Although the real lattice is monoclinic, the
energy as a function of the wave number is topologically the
same as that in the rectangular lattice as shown in Figs. 1(b)
and 1(c). The energy as a function of the uniform magnetic
field (Hofstadter butterfly diagram) is also the same. (A similar
situation has been known to occur in the triangular lattice
and the honeycomb lattice. For example, the tight-binding
electrons on the triangular lattice have the same energy versus
magnetic field as those on the square lattice with diagonal
hoppings along one direction [24,25].) Since tS1 �= tS2 and
tI1 �= tI2, there are two nonequivalent sites A and B in the unit
cell. There are two bands in this case. Electrons are 3/4 filled
for the bands made of the highest occupied molecular orbits
(HOMO) of TMTSF, since one electron is removed from two
TMTSF molecules. Then the lower band is completely filled
and the upper band is half-filled. By diagonalizing Eq. (A20)
(2 × 2 matrix) in Appendix A, we plot the Fermi surface
in Fig. 2(a), in which we take the parameters reported by
Alemany, Pouget, and Canadell [51]; tS1 = 274.4, tS2 = 250.5,
tI1 = −29.1, tI2 = −42.7, tI3 = 56.6, tI4 = −6.3 meV.

The effect of the ordering of the anion NO3 is taken into
account as an on-site potential, V and −V , as shown in
Fig. 1(b). In this case, there are four sites (A, B, A′, and B ′)
in the unit cell, which is indicated by a light green rectangle
in Fig. 1(b); the unit cell becomes twice larger than without
the anion ordering. The Brillouin zone is halved along kx

direction. The energy is obtained by the diagonalization of
Eq. (A11) (4 × 4 matrix) in Appendix A. The minimum gap
made at (akx/π,bky/π ) = (1/4,1) between a third band and

a fourth band is obtained to be about 17.80 meV when we
set V = 12.38 meV. Alemany, Pouget, and Canadell [51]
have obtained the minimum gap between the third band
and the fourth band to be 17.8 meV. Therefore we take
±V = ±12.38 meV as the on-site potential of (TMTSF)2NO3

at T < TAO. We show the Fermi surface in Fig. 2(b) in the
extended zone scheme, where there exist electron and hole
pockets with the same area. When V becomes large, the areas
of electron and hole pockets become small. In Figs. 3 and 4,
we show the 3D plots and the contour plots of the third band
and the fourth band as a function of the wave number k for
V = 12.38 and 86.50 meV, respectively. When V � 86.50
meV, the areas of electron and hole pockets are zero.

IV. QUANTUM HALL EFFECT
AND LANDAU QUANTIZATION

The energy of tight-binding electrons in a uniform magnetic
field is obtained by taking the phase factor in the hoppings as
shown in Appendix B. The energy can be calculated only when
the magnetic flux (�) through the area of the unit cell (4ab)
is a rational number p/q in the unit of the flux quantum (φ0),
where p and q are mutually prime numbers. Thus we define h

as

h = �

φ0
= 4abH

φ0
, (1)

and we take h as a rational number

h = p

q
. (2)

The value of the flux quantum is φ0 = 2π�c/e � 4.14 ×
10−15 T m2, where 2π�, c and e are the Planck con-
stant, the speed of light and the absolute value of electron
charge, respectively. Since a � 7.02 Å and b � 7.54 Å in
(TMTSF)2NO3 [52], h = 1 corresponds to about H = 1955 T.

In the presence of a weak periodic potential [21,22], each
Landau level is broadened (which is called Harper broadening)
and separates into p bands when the magnetic flux � through
the unit cell is � = (p/q)φ0. On the other hand, the electron
energy becomes q bands when the magnetic flux � is applied
to the tight-binding electrons with one site and one orbit in the
unit cell.

When the chemical potential is in the rth gap from
the bottom in the tight-binding model, the quantized Hall
conductance is given as

σxy = e2

h
tr , (3)

where the integer tr is given by the Diophantine equation
[34–36]:

r = qsr + ptr . (4)

Two cases (the weak potential case and the tight-binding
electrons) are reconciled, when p/q � 1 and the electron
filling is small in the tight-binding model on a rectangular (or
triangular, honeycomb, etc.) lattice; every set of p bands from
the bottom of the energy is considered as a broadened Landau
level, i.e., each Landau level is separated into p bands. The
energy gaps above the (ptr )th band from the bottom are larger
than other energy gaps. When the chemical potential is in the
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(a)

(b)
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FIG. 3. (a) The third and fourth energy bands near the Fermi
energy (ε0

F � 377.1 meV) at 3/4-filling with the same parameters as
those in Fig. 2(b) (V = 12.38 meV). In this case, the energy gap at
(akx/π,bky/π ) = (1/4,1) is 2
 � 17.80 meV, the top energy of the
third band is ε0

3t � 425.3 meV, and the bottom energy of the forth
band is ε0

4b � 317.8 meV. Contour plots of (b) the third energy band
and (c) the fourth energy band. Dotted lines are for the Fermi surface
at 3/4-filling.

(ptr )th gap from the bottom, sr = 0. The Hall conductance
given by tr is understood as the result of the tr Landau levels,
each of which is broadened and separates into p sub-bands.
The smaller (p − 1) gaps are considered as the gaps between
the p bands within the tr th Landau level, as in the weak
potential case. In this way, the trivial value of the quantum

(a)

(b)

(c)

FIG. 4. (a) The third and fourth energy bands near the Fermi
energy (ε0

F � 374.7 meV) at 3/4-filling for V = 86.50 meV. Other
parameters are the same as those in Fig. 2. Contour plots of (b) the
third energy band and (c) the fourth energy band.

Hall effect (sr = 0) can be understood in the case Landau
levels for free electrons,

εparabola
n ∝ (n + γ parabola)h, (5)

where n is zero or a positive integer and the phase is γ parabola =
1/2. The Landau quantization of the energy levels [Eq. (5)]
is obtained in the approximation that the energy dispersion
near the bottom of the band at h = 0 is treated as that of
free electrons, i.e., parabolic (ε(h=0)

k ∝ (k2
x + k2

y)). The Landau
levels are obtained by the condition that the area of the Fermi
surface at h = 0 is quantized [11] to be proportional to (n +
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γ )h. We call this quantization as the semiclassical Landau
quantization.

In order to observe nontrivial values of Hall conductance
(sr �= 0) in the tight-binding electrons on rectangular and
triangular lattices, a very strong magnetic field (the flux
through the unit cell should be the same order as the flux
quantum) is required. In the honeycomb lattice, which has
two sites in the unit cell and there are 2q bands, the gaps
labeled by sr = 1 are also large at small magnetic field near
half-filling [53]. The quantum Hall effect with sr = 1 is
observed in graphene when electrons or holes are doped [54].
The quantum Hall effect in graphene with sr = 1 can be
also understood semiclassically, if we approximate the energy
dispersion near the massless Dirac points [±k0 = ±(k0

x,k
0
y)]

at h = 0 as

ε
(h=0)
k ∝ ±

√(
kx − k0

x

)2 + (
ky − k0

y

)2
(6)

and adopt the semiclassical quantization [11] of the area of the
Fermi surface,

εDirac
n ∝ sign(n)

√
(|n| + γ Dirac)h, (7)

where n is integer and γ Dirac = 0. In the semiclassical treat-
ment of Landau quantization, the broadening of the Landau
levels and a rich structure of the Hofstadter butterfly diagram
do not appear. In a real system of graphene, a very strong
magnetic field is necessary to observe the quantum Hall effect
for sr �= 1. However, when the area of the unit cell is large,
the rich structure of the Hofstadter butterfly diagram can be
observed experimentally at accessible magnetic fields. Indeed,
the moire patterns in twisted bilayer graphene, graphene on
hexagonal boron nitride (h-BN) substrates [55], graphene
antidot lattices [56], cold atoms in optical lattices [57,58],
etc., are shown to have a Hofstadter butterfly diagram with
various values of sr and tr .

V. ENERGY IN THE MAGNETIC FIELD

By numerically diagonalizing the matrix of Eq. (B23),
we plot the energy εi,k as a function of h in Fig. 5(a) for
(TMTSF)2NO3 at T > TAO, where the Fermi surface consists
of two warped lines as shown in Fig. 2(a). There are 2q bands at
h = p/q and each band is doubly degenerate. Since the Fermi
surface is not closed, the Landau quantization is not expected to
occur near the Fermi energy in the semiclassical treatment [11].
Even in this case there should be some very small gaps in the
tight-binding electrons in principle, but there are no visible
gaps in the energy spectrum near 3/4-filling, as shown in
Fig. 6. It is consistent with the semiclassical picture that the
Landau quantization occurs only when the Fermi surface is
closed. At T < TAO, where the orientation of the anion orders,
V is finite and electron and hole pockets appear at h = 0
as shown in Fig. 2(b). The Hofstadter butterfly diagrams for
V = 12.38 meV and the three-times larger value (V = 37.14
meV) are shown in Figs. 5(b) and 5(c), respectively. The
gaps are labeled by (sr ,tr ) [Eq. (4)] in Figs. 5(a)–5(c). The
overall structures for V �= 0, especially for smaller filling
[(sr ,tr ) = (0,1),(0,2), etc.], are similar to that for V = 0
[Fig. 5(a)]. We plot the Hofstadter butterfly diagram near the
Fermi energy for the 3/4 filled case in Fig. 7 (V = 12.38 meV),

(a)

(b)

(c)

FIG. 5. Energy as a function of h. (a) Parameters are the same as
those in Fig. 2(a) (V = 0). (b) Parameters are the same as those in
Fig. 2(b) and Fig. 3 (V = 12.38 meV). (c) V = 37.14 meV and other
parameters are the same as those in Fig. 2. We take h = p/q with
q = 67 and p = 1,2,3, . . . ,2q. Wave numbers are taken as (kx,ky) =
(0,0), (π/(2aq),0), and (2π/(2aq),0). Other parameters are the same
as those in Fig. 2. The quantum numbers (sr ,tr ) for some gaps are
shown.

Fig. 10 (V = 37.14 meV), and Fig. 11 (V = 86.50 meV, no
pockets).

In Fig. 7, the energy is not quantized as delta functions for
a finite value of h, but we can see the broadened Landau levels
starting from εi = ε0

4b and ε0
3t at h = 0, where ε0

4b and ε0
3t are

the bottom energy of the fourth band and the top energy of the
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FIG. 6. Energy as a function of h for V = 0. [A close up figure
of Fig. 5(a) at h ≈ 0 and εi ≈ ε0

F � 377.0 meV, which is the Fermi
energy at h = 0 for 3/4 filled case]. We take h = 1/q with 20 � q �
80 and h = 2/(2m + 1) with 20 � m � 79, where the wave number
(kx,ky) = (nxπ/(30a),0) with 0 � nx � 30. The energy gaps cannot
be seen in this scale.

third band, respectively (see Fig. 3). Note that the broadening
of the Landau levels is not seen in the semiclassical theory [7]
of the magnetic breakdown.

If we approximate electron and hole pockets in eigenvalues
of Eq. (A11) as the anisotropic parabolic bands, it is expected
that the Landau levels are semiclassically given by

εelectron pocket
n � ε0

4b + 1

Cep
(n + γ )h (8)

and

εhole pocket
n � ε0

3t − 1

Chp
(n + γ )h, (9)

where γ = 1/2, Cep, and Chp are constants depending on the
curvature of the anisotropic parabolic bands, respectively, and
n = 0,1,2, . . . . If this is the case, the ratio of the slope of the
Landau levels as a function of the magnetic field should be(

0 + 1

2

)
:

(
1 + 1

2

)
:

(
2 + 1

2

)
: · · · = 1 : 3 : 5 : · · · .

(10)

We obtain, however, that the ratio of the slope is approx-
imately 1050 : 2100 : 3000 : · · · ≈ 1 : 2 : 3 : · · · , and 610 :
1500 : 2200 : · · · ≈ 2 : 5 : 7 : · · · from the dotted lines in
Fig. 7(a). When we approximate the slopes in the region of
a weaker magnetic field as shown in Fig. 7 (c), we obtain the
ratio of the slope as 1040 : 2570 : 3900 : · · · ≈ 2 : 5 : 8 : · · ·
and 610 : 1550 : 2500 : · · · ≈ 2 : 5 : 8 : · · · . These results are
inconsistent with the expected values of Eq. (10). As seen
in Figs. 7(a) and 7(c) the fittings with the dotted lines
are not good. Therefore the semiclassical quantization of
Landau levels for free electron and free hole pockets is not
a quantitatively acceptable approximation, even when we
neglect the broadening of Landau levels.

Another interesting point in Fig. 7 is that there are many
gaps with the same index (sr ,tr ) near 3/4-filling (sr = 3). Gaps
with the same index (3,tr ) are closed or almost closed at

FIG. 7. (a) Energy as a function of h with the same parameters
as those in Figs. 2(b), 3, and 5(b) (V = 12.38 meV), where ε0

F �
377.1 meV. We take h = 1/q with 10 � q � 80 and h = 2/(2m +
1) with 10 � m � 79. (b) An enlarged figure of (a). We take h =
1/q with 40 � q � 200 and h = 2/(2m + 1) with 40 � m � 199. A
dotted black line is the chemical potential as a function of h. (c) A
figure for smaller h. The parameters are the same as those of (a) and
(b). We take h = 1/q with 84 � q � 333 and h = 2/(2m + 1) with
84 � m � 332. We take the wave number (kx,ky) = (nxπ/(18a),0)
with 0 � nx � 18 for q > 200, (kx,ky) = (nxπ/(30a),0) with 0 �
nx � 30 for 80 < q � 200 and (kx,ky) = (nxπ/(61a),0) with 0 �
nx � 61 for q � 80.

points as a function of h. If the Landau levels [dotted lines
in Figs. 7(a) and 7(c)], which were thought to be the quantized
levels of electrons and holes in the electron and hole pockets,
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(a)

(b)

FIG. 8. 1/hn as a function of n for (a) 0 � n � 7 and (b) 8 �
n � 21. At the magnetic fields hn (n = 0,1,2, . . . ), the energy gap
with the index (3,0) is closed, as shown in Fig. 7.

were broadened in the tight-binding model, bands would be
overlapped in finite ranges of h instead of closed at points.
We can see the bands between the gaps (3,tr ) and (3,tr + 1)
as if they start from the Fermi energy ε0

F at h = 0, which are
indicated by green lines in Fig. 7(b).

We draw blue circles in Fig. 7 at εi = ε0
F and h =

h0,h1,h2,h3, · · · , at which the energy gap labeled by (3,0)
is almost closed. We plot 1/hn as a function of n in Fig. 8. We
can fit 1/hn as

1

hn

= 1

0.0675
(n + 0.76) (0 � n � 7), (11)

1

hn

= 1

0.0670
(n + 0.68) (8 � n � 21), (12)

in Fig. 8. In Eqs. (11) and (12), the regions of 1/hn are 11.5 �
1/hn � 115 and 130 � 1/hn � 324.5, which correspond to
170 � H � 17 T and 15.04 T � H � 6.025 T, respectively.

When we set ε
electron pocket
n = ε0

F and ε
hole pocket
n = ε0

F in
Eqs. (8) and (9), we get

1

hn

� 1

Cep
(
ε0

F − ε0
4b

)(
n + 1

2

)
, (13)

1

hn

� 1

Chp
(
ε0

3t − ε0
F

)(
n + 1

2

)
, (14)

where Cep(ε0
F − ε0

4b) and Chp(ε0
3t − ε0

F) are given by the areas of
the electron pocket and the hole pocket at h = 0 per the area of

the Brillouin zone, respectively. The areas of electron pocket
(black curves) and hole pocket (red curves) are the same and
0.0676 times the area of the Brillouin zone, as seen in Fig. 2(b).
Thus the obtained values from the linear fitting (0.0675 and
0.0670) in Eqs. (11) and (12) are in good agreement with
the semiclassical Landau quantization for parabolic bands,
although γ deviates from 1/2.

To analyze the closing of the gap in detail, we plot the close
up figures near h4 = 2/141 in Fig. 9. There are 564(=4 × q)
bands when h = p/q = 2/141. When the band is 3/4 filled,
the chemical potential is between the 423th and 424th bands,
i.e., r = 423. The gap is almost closed at kx = ±π/(4qa) but
there is a small gap, which depends on ky very slightly, as
shown in Figs. 9(c) and 9(d).

Next, we study the energy for a larger V = 37.14 meV
(Fig. 10). The width of the band at V = 37.14 meV is smaller
than that at V = 12.38 meV, and it is smaller at smaller h. In
this case the areas of the electron pocket and the hole pocket are
smaller than those for V = 12.38 meV. The ratio of the slopes
of the “Landau levels” starting from the bottom of the fourth
band and the top of the third band [red dotted lines in Figs. 10(a)
and 10(c)] becomes closer to that of free electrons, 1 : 3 : 5 :
· · · . This can be understood as follows. When V becomes
large, the electron pocket and hole pocket are separated in
the Brillouin zone and the areas of electron and hole pockets
at h = 0 and 3/4-filling become small. Then we can safely
adopt the approximation that electrons and holes in the pockets
are treated as free electrons and free holes. The semiclassical
picture of the magnetic breakdown between pockets may cause
small effects. We plot the inverse of the magnetic fields hn at
which the gaps indexed by (3,0) are closed or almost closed,
as a function of n in Fig. 11. This 1/hn is fitted by a straight
line with a larger slope than that of V = 12.38 meV (Fig. 8),
which corresponds to the smaller areas of the electron and hole
pockets. The phase factor γ obtained from the intersection with
the n axis is near the free electron value, 1/2.

We also study the case of V = 86.5 meV, when the top of
the third band ε3t and the bottom of the fourth band ε4b are the
same and the electron and hole pockets disappear at 3/4-filling,
as shown in Fig. 4. We plot the energy as a function of h in
Fig. 12. The bandwidths are very narrow. Since the ratio of the
slopes of the Landau levels is close to 1 : 3 : 5 : · · · , the bands
are recognized as Landau levels for free electrons and holes.

If the holes or the electrons are doped, the chemical
potential is above or below the dotted blue line in Fig. 7(b)
(V = 12.38 meV) or the dotted orange line in Fig. 10(b) (V =
37.14 meV). The Hall conductance is quantized when the
chemical potential is in the energy gap, but it is not quantized
when the chemical potential is within the broadened band.
For a reasonable value of anion potential (V = 12.38 meV),
the energy band is broadened. Therefore the Hall conductance
is quantized only in some regions of the magnetic field, if
electrons or hales are doped, and it is not quantized in other
regions of the magnetic field.

VI. MAGNETIZATION AND DE HAAS–VAN
ALPHEN OSCILLATIONS

The oscillatory part of the magnetization with the fixed
chemical potential (μ) at the temperature (T ) is given by the
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(a)

(b)

(c)

(d)

FIG. 9. (a) A close up figure of Fig. 7 near h4 (V = 12.38 meV).
We take h = 1/72, 2/143, 1/71, 2/141, 1/70, 2/139, 1/69, 2/137,
and 1/68. (b) Energies as a function of kx at h = 2/141 and ky = 0.
(c) 3D plot of the energies at h = 2/141. (d) There is a small
gap between ε423 and ε424 at kx = ±π/(4qa). The gap is almost
independent of ky .

LK formula [6,12–20]. In the generalized LK formula in two-
dimensional metals the magnetization oscillates periodically

(a)

(b)

(c)

FIG. 10. (a) Energy as a function of h for V = 37.14 meV. Other
parameters are the same as those in Fig. 2(b). The direct band gap at
h = 0 is 2
 � 53.32 meV, the Fermi energy for the 3/4 filled case is
ε0

F � 376.6 meV, the top energy of the third band is ε0
3t � 407.3 meV,

and the bottom energy of the forth band is ε0
4b � 336.2 meV. (b) An

enlarged figure of (a). A dotted orange line is the chemical potential
as a function of h. (c) A figure for smaller h. The parameters are
the same as those of (a) and (b). In all figures, the values of q and
the wave number (kx,ky) are the same as those of Fig. 7. Small blue
circles indicate the magnetic fields h0,h1,h2, · · · at which the gaps
indexed by (3,0) are closed or almost closed.

as a function 1/H with the period

f = c�A

2πe
, (15)
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(a)

(b)

FIG. 11. Similar plot as Fig. 8 for V = 37.14 meV.

where A is the area of the Fermi surface at H = 0. The
generalized LK formula at T = 0 for the two-dimensional
metals is given by

MLK = − e

2π2c�

A
∂A
∂μ

∞∑
l=1

1

l
sin

[
2πl

(
f

H
− γ

)]
. (16)

Note that the oscillation part of the magnetization in LK
formula is zero at

H = Hn (17)

and we obtain

1

Hn

= 1

f
(n + γ ) (18)

with n = 0,1,2, . . . . Namely, MLK = 0 appears periodically
as a function of 1/H with the frequency, f . The amplitude of
the oscillation at T = 0 is independent of H in the LK formula.
In the LK formula, the broadening of the Landau levels in the
tight-binding model is not taken into account.

In this section, we study dHvA oscillation in
(TMTSF)2NO3 by taking the effects of the magnetic field in
the tight-binding model. The energy εi,k in the magnetic field
is obtained as the eigenvalues of 4q × 4q matrix ε̃k given in
Eq. (B23), where i = 1 ∼ 4q. The thermodynamic potential
� per sites at T is obtained as

� = − kBT

4qNk

4q∑
i=1

∑
k

ln

[
exp

(
μ − εi,k

kBT

)
+ 1

]
, (19)

(a)

(b)

FIG. 12. (a) Energy as a function of h at V = 86.5 meV, where
2
 � 123.2 meV, ε0

F = ε0
3t = ε0

4b � 374.7 meV. We take h = 1/q

with 10 � q � 80 and h = 2/q with q = 2m + 1 and 20 � m � 59,
where the wave number (kx,ky) = (nxπ/(30a),0) with 0 � nx � 30.
(b) An enlarged figure of (a). We take h = 1/q with 200 � q � 500,
where (kx,ky) = (nxπ/(18a),0) with 0 � nx � 18.

where kB is the Boltzmann constant and Nk is the number of
k points taken in the magnetic Brillouin zone. At T = 0, �

becomes the total energy with fixed μ,

Eμ = 1

4qNk

∑
εi,k�μ

(εi,k − μ). (20)

The magnetization is obtained in grand canonical ensemble by

Mμ = −∂�

∂h
. (21)

On the other hand, when the electron number is fixed
[in (TMTSF)2X, electrons are ν-filling with ν = 3/4], the
magnetic-field dependence of the chemical potential is not
negligible in two-dimensional systems in general [6,12–15],
whereas it can be neglected in three-dimensional metals. In
this study, the Helmholtz free energy and the magnetization are
calculated in the canonical ensemble with the fixed electron
number. In that case, the chemical potential, μ, should be
obtained by the equation

ν = 1

4qNk

4q∑
i=1

∑
k

1

exp
( εi,k−μ

kBT

) + 1
. (22)
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The Helmholtz free energy (F ) per sites at T is given by

F = − kBT

4qNk

4q∑
i=1

∑
k

ln

[
exp

(
μ − εi,k

kBT

)
+ 1

]
+ μν.

(23)

At T = 0, it becomes

Eν = 1

4qNk

∑
εi,k�μ

εi,k. (24)

The magnetization for fixed electron filling ν is given by

Mν = −∂F

∂h
. (25)

We obtain the magnetization by the numerical differentiation.
As seen in Figs. 7(b) and 10(b), the chemical potentials

(dotted black and orange lines) for ν = 3/4 are in the gap
labeled by (3,0) and almost independent of h. Therefore,
in both cases of V = 12.38 and 37.14 meV, Mμ and Mν

are expected to be almost the same. Indeed, we obtained a
negligible difference between Mμ and Mν in the numerical
calculation. In Figs. 13(a) and 13(b) and Figs. 14(a) and 14(b),
we plot F and Mν as a function h with V = 12.38 meV
and 37.14 meV, respectively. The periodical oscillations as a
function of 1/h are seen in Figs. 13(c) and 14(c), respectively.
These oscillations are thought to correspond to the dHvA
oscillation for electrons and holes in semiclassical theory. The
free energy, F , has local maximum values at h = hn, which
are shown as blue circles in Figs. 7 and 10. At h = hn, the
gaps labeled by (3,0) are closed or almost closed. The free
energy may be lowered by opening a finite gap at the Fermi
energy. Therefore it is reasonable that the free energy is a
local maximum at h = hn. As a result, the magnetization is
zero at h = hn. Since 1/hn is fitted by a straight line (see
Figs. 8 and 11) proportional to (n + γ ), the magnetization
oscillates periodically as a function 1/h (dHvA oscillation).
These frequencies (0.0675 and 0.0670) in Fig. 8 are almost the
same as the areas of the electron and hole pockets in Fig. 2(b)
per area of the Brillouin zone. It is expected that, in the dHvA
experiment of (TMTSF)2NO3, γ = 0.76 in Eq. (11) [γ = 0.68
in Eq. (12)] are estimated at 17 � H � 170 T (6.025 T �
H � 15.04 T). From the experiment of SdH oscillations [59],
γ is estimated to be 0. The SdH experiment was performed
in the SDW state. The amplitude of the SDW order parameter
may depend on the magnetic field. Therefore it is not easy
to compare the experiment with our result calculated in the
metallic state without SDW order.

For larger V (V = 37.14 meV), the amplitude of the
magnetization oscillations is almost constant for 1/h � 100
(i.e., H � 19.55 T) at T = 0 as shown in Figs. 14(b) and 14(c).
The almost constant field dependence of the amplitude and
the sawtooth shape of Mν [Fig. 14(c)] are the same as
those of MLK [Eq. (16)] for the fixed chemical potential
case in two-dimensional metals. For the realistic value of V

(V = 12.38 meV), the sawtooth shape is similar. However,
the amplitude of the magnetization oscillations increases as

(a)

(b)

(c)

FIG. 13. Free energy (a) and magnetizations as a function of h

(b) and as a function of 1/h (c) at V = 12.38 meV for T = 0,5,10
and 15 K. We take h = 1/q with 5 � q � 333 and h = 2/q with
q = 2m + 1 and 5 � m � 332, where (kx,ky) = (nxπ/(6a),0) with
0 � nx � 6 for q > 333, (kx,ky) = (nxπ/(13a),0) with 0 � nx � 13
for 200 < q � 333, (kx,ky) = (nxπ/(30a),0) with 0 � nx � 30 for
80 < q � 200 and (kx,ky) = (nxπ/(61a),0) with 0 � nx � 61 for
q � 80.

a function of 1/h for 1/h � 333 (H � 5.865 T) at T = 0
as shown in Figs. 13(b) and 13(c). The h dependence of the
amplitude of the magnetization oscillation is caused by the
broadening of Landau levels.
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(a)

(b)

(c)

FIG. 14. Free energy (a) and magnetizations as a function of h (b)
and as a function of 1/h (c) at V = 37.14 meV for T = 0, 5, 10, and
15 K. We take the same values for q and (kx,ky) as those of Fig. 13.

VII. CONCLUSIONS

We use the spinless tight-binding model on a two-
dimensional rectangular lattice for (TMTFS)2NO3 with realis-
tic band parameters and potentials due to the effect of the anion
ordering. The effects of a uniform magnetic field ∼6 T are
treated by introducing phase factors for the electron hoppings.
We think this quantum-mechanical treatment of the uniform
magnetic field provides us more appropriate results than the

semiclassical theory [7,8], in which a Landau quantization
of the semiclassical closed orbits of electrons and holes is
assumed by the magnetic breakdown phenomenon with a
phenomenological parameter.

For a reasonable value of the anion potential (V =
12.38 meV), the energy bands in the magnetic field are
broadened (Fig. 7), which is caused by the tight-binding nature
of electrons. In principle, several much smaller gaps should
exist in the broadened Landau levels, but they are very small
and may not be seen in experiments at finite temperatures. If the
electrons or the holes are doped, the region of the nonquantized
Hall effect becomes wider as the magnetic field increases due
to the broadening of Landau levels. This broadening causes
an interesting phenomenon that the amplitude of de Haas–van
Alphen oscillations at T = 0 decreases as the magnetic field
increases. This is different from the LK formula although the
chemical potential is almost constant in this calculation.

For a larger value of the anion potential (V = 37.14 meV),
the energy bands in the magnetic field are narrow and are seen
as slightly broadened Landau levels (Fig. 10), which is similar
to the energy obtained from the semiclassical theory [7]. In
this case, the amplitude of de Haas–van Alphen oscillation
at T = 0 is almost independent of the magnetic field at low
field, as in the semiclassical LK formula [6,12–20]. The energy
gaps at 3/4-filling are closed or almost closed periodically at
the inverse magnetic field, which was seen in both cases of
V = 12.38 and 37.14 meV.

We would like to emphasize the difference between the
quantum-mechanical theory and semiclassical theory [7] for
(TMTSF)2NO3, which has electron and hole pockets at h = 0.
Unlike the cases in the semiclassical theory, we have shown
that the Landau levels are sufficiently broadened near the
Fermi energy and the energy gaps are closed or almost closed
periodically as a function of the inverse magnetic field. Since
we have neglected the hoppings between the conducting plane,
we have not discussed the effects of the direction of the
magnetic field. We have not studied the transport properties
in this paper, either. Therefore the angular-dependent magne-
toresistance have to be studied quantum mechanically in the
future.

It is possible to observe the results shown about the quantum
Hall conductance and dHvA oscillation in (TMTSF)2NO3

without SDW (for example, at TSDW < T < TAO, where SDW
state does not exist). The wider region of the nonquantized
Hall effect upon increasing the magnetic field will be observed
under doping when the broadening of Landau levels is larger
than thermal broadening. The Hall conductance [60] and
magnetization [61] have been observed experimentally in
(TMTSF)2NO3 in the SDW state, but not in the metallic state.
If the SDW state is suppressed by pressure, which affects the
tight-binding parameters slightly but changes the nesting of
the Fermi surface drastically, the magnetic field dependence
of the amplitude of dHvA oscillation will be observed at low
temperature.
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APPENDIX A: ENERGY AT H = 0

We use the spinless two-dimensional tight-binding model
on a rectangular lattice in the unit cell with four sites
(A, B, A′, and B ′), where TMTSF molecules correspond to
sites. The effect of the anion ordering is represented by the
on-site potential along x axis, (V, V, −V, −V ), as shown in
Figs. 1(b) and 1(c). We show the Fermi surface in Figs. 2(a)
and 2(b) for V = 0 and 12.38 meV, respectively.

The Bravais lattices for a rectangular lattice are given by

v1 = (4a,0) (A1)

and

v2 = (0,b), (A2)

where a and b are the lattice spacings of TMTSF molecules.
In this model, the Hamiltonian is given by

Ĥ0 =
∑
i,j

tij c
†
i cj +

∑
i

Vic
†
i ci

=
∑

rj

[
tS1

(
a†

rj
brj

+ a′†
rj

b′
rj

+ b†rj
arj

+ b′†
rj

a′
rj

) + tS2
(
b†rj

a′
rj

+ b′†
rj

arj +v1 + a′†
rj

brj
+ a

†
rj +v1

b′
rj

)

+ tI1
(
a
†
rj +v2

brj
+ a

′†
rj +v2

b′
rj

+ b†rj
arj +v2 + b′†

rj
a′

rj +v2

) + tI2
(
b
†
rj +v2

a′
rj

+ a′†
rj

brj +v2 + b
′†
rj +v2

arj +v1 + a
†
rj +v1

b′
rj +v2

)
+ tI3

(
a†

rj
arj +v2 + a′†

rj
a′

rj +v2
+ b†rj

brj +v2 + b′†
rj

b′
rj +v2

+ a
†
rj +v2

arj
+ a

′†
rj +v2

a′
rj

+ b
†
rj +v2

brj
+ b

′†
rj +v2

b′
rj

)
+ tI4

(
a
†
rj +v2

a′
rj

+ b
†
rj +v2

b′
rj

+ a
′†
rj +v2

arj +v1 + b
′†
rj +v2

brj +v1 + a′†
rj

arj +v2 + b′†
rj

brj +v2 + a
†
rj +v1

a′
rj +v2

+ b
†
rj +v1

b′
rj +v2

)
+V

(
a†

rj
arj

+ b†rj
brj

− a′†
rj

a′
rj

− b′†
rj

b′
rj

)]
, (A3)

where a
†
rj

, b
†
rj

, a
′†
rj

and b
′†
rj

(arj
, brj

, a′
rj

and b′
rj

) are creation
(annihilation) operators for A, B, A′, and B ′ sites in j th unit
cell, respectively. By using the following Fourier transform:

arj
=

∑
k

eik·rj ak, (A4)

brj
=

∑
k

eik·(rj + 1
4 v1)bk, (A5)

a′
rj

=
∑

k

eik·(rj + 1
2 v1)a′

k, (A6)

b′
rj

=
∑

k

eik·(rj + 3
4 v1)b′

k, (A7)

we obtain the Hamiltonian in the momentum space as

Ĥ0 =
∑

k

C
†
kεkCk, (A8)

where

C
†
k = (a†

k,b
†
k,a

′†
k ,b

′†
k ) (A9)

and

Ck =

⎛
⎜⎜⎜⎝

ak
bk

a
′†
k

b
′†
k

⎞
⎟⎟⎟⎠. (A10)

In this equation, εk is a 4 × 4 matrix as follows:

εk =

⎛
⎜⎜⎜⎝

εkAA εkAB εkAA′ εkAB ′

εkBA εkBB εkBA′ εkBB ′

εkA′A εkA′B εkA′A′ εkA′B ′

εkB ′A εkB ′B εkB ′A′ εkB ′B ′

⎞
⎟⎟⎟⎠ (A11)

with

εkAA = εkBB = 2tI3 cos(bky) + V, (A12)

εkA′A′ = εkB ′B ′ = 2tI3 cos(bky) − V, (A13)

εkAB = εkA′B ′ = tS1e
iakx + tI1e

i(akx−bky ), (A14)

εkBA′ = εkB ′A = tS2e
iakx + tI2e

i(akx−bky ), (A15)

εkBA = εkB ′A′ = ε∗
kAB, (A16)

εkAB ′ = εkA′B = ε∗
kBA′, (A17)

εkAA′ = εkBB ′ = 2tI4 cos(2akx − bky), (A18)

εkA′A = εkB ′B = εkAA′ . (A19)

When V = 0, the Hamiltonian matrix of Ĥ0 can be reduced
to the 2 × 2 as

ε0
k =

(
ε

(0)
kAA ε

(0)
kAB

ε
(0)
kBA ε

(0)
kBB

)
(A20)

with

ε
(0)
kAA = ε

(0)
kBB

= 2tI3 cos(bky) + 2tI4 cos(2akx − bky), (A21)

ε
(0)
kAB = tS1e

iakx + tS2e
−iakx + tI1e

i(akx−bky ) + tI2e
−i(akx−bky ),

(A22)

ε
(0)
kBA = (

ε
(0)
kAB

)∗
. (A23)
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APPENDIX B: ENERGY IN THE MAGNETIC FIELD

The Hamiltonian in a spinless two-dimensional tight-
binding model in the magnetic field becomes

Ĥ =
∑
i,j

tij c
†
i cj e

i2πφij +
∑

i

Vic
†
i ci , (B1)

where ci is ari , bri , a
′
ri , or b′

ri , and the phase factor (φij ) is given
by

φij = e

ch

∫ rj

ri

A · dl, (B2)

In this study, the magnetic field is applied perpendicular to
the x-y plane and we take the Landau gauge A = (0,Hx,0).
The flux thorough the unit cell (4ab) is

� = 4abH. (B3)

The phase factors are given as

φ
(n)
I1AB = −φ

(n)
I1BA = �

φ0

(
n + 1

8

)
, (B4)

φ
(n)
I1A′B ′ = −φ

(n)
I1B ′A′ = �

φ0

(
n + 5

8

)
, (B5)

φ
(n)
I2BA′ = −φ

(n)
I2A′B = �

φ0

(
n + 3

8

)
, (B6)

φ
′(n−1,n)
I2B ′A = �

φ0

(
n − 1

8

)
, (B7)

φ
′(n+1,n)
I2AB ′ = − �

φ0

(
n + 7

8

)
, (B8)

φ
(n)
I3AA = �

φ0
n, (B9)

φ
(n)
I3BB = �

φ0

(
n + 1

4

)
, (B10)

φ
(n)
I3A′A′ = �

φ0

(
n + 1

2

)
, (B11)

φ
(n)
I3B ′B ′ = �

φ0

(
n + 3

4

)
, (B12)

φ
(n)
I4AA′ = −φ

(n)
I4A′A = �

φ0

(
n + 1

4

)
, (B13)

φ
(n)
I4BB ′ = −φ

(n)
I4B ′B = �

φ0

(
n + 1

2

)
, (B14)

φ
′(n−1,n)
I4A′A = �

φ0

(
n − 1

4

)
, (B15)

φ
′(n−1,n)
I4B ′B = �

φ0
n, (B16)

and the phase factor is zero for hoppings tS1 and tS2. The phase
factor φ

(n)
μαβ (μ = I1,I2,I3 or I4, α and β are A, B, A′, or B ′)

is the phase factor for the hopping μ from the site β to the site
α both in the nth unit cell (4na � xi < 4(n + 1)a for both α

and β). When α �= β, the direction of the hopping is uniquely
determined, and when α = β we take the hopping to the y

direction. The phase factor φ
′(m,n)
μαβ (m = n − 1 or m = n + 1)

is for the hopping μ from the β site in the nth unit cell to the α

site in the mth unit cell (4na � xi < 4(n + 1)a for the β site
and 4ma � xi < 4(m + 1)a for the α site).

When the magnetic field is commensurate with the lattice
period, i.e.,

�

φ0
= p

q
, (B17)

where p and q are integers, the magnetic unit cell is 4qa × b.
The Hamiltonian is written as

Ĥ =
∑

k

C̃
†
kε̃kC̃k, (B18)

where the summation over k is taken in the magnetic Brillouin
zone,

− π

4qa
� kx <

π

4qa
, (B19)

− π

b
� ky <

π

b
, (B20)

C̃
†
k and C̃k have 4q components of creation and annihilation

operators:

C̃
†
k = (

a
(0)†
k ,b

(0)†
k ,a

′(0)†
k ,b

′(0)†
k , · · · ,a

′(q−1)†
k ,b

′(q−1)†
k

)
(B21)

and

C̃k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
(0)
k

b
(0)
k

a
′(0)
k

b
′(0)
k

...

a
′(q−1)
k

b
′(q−1)
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B22)

The 4q × 4q matrix ε̃k is expressed with 4 × 4 matrices D
(n)
k

and F
(n)
k as

ε̃k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D
(0)
k F

(1)
k 0 · · · 0 F

(0)†
k

F
(1)†
k D

(1)
k F

(2)
k

. . .
. . . 0

0 F
(2)†
k D

(2)
k F

(3)
k

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . . F
(q−2)†
k D

(q−2)
k F

(q−1)
k

F
(0)
k 0 . . . 0 F

(q−1)†
k D

(q−1)
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B23)

where

D
(n)
k =

⎛
⎜⎜⎜⎜⎝

ε
(n)
kAA ε

(n)
kAB ε

(n)
kAA′ 0

ε
(n)
kBA ε

(n)
kBB ε

(n)
kBA′ ε

(n)
kBB ′

ε
(n)
kA′A ε

(n)
kA′B ε

(n)
kA′A′ ε

(n)
kA′B ′

0 ε
(n)
kB ′B ε

(n)
kB ′A′ ε

(n)
kB ′B ′

⎞
⎟⎟⎟⎟⎠, (B24)
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ε
(n)
kAA = 2tI3 cos

[
bky + 2πφ

(n)
I3AA

] + V, (B25)

ε
(n)
kBB = 2tI3 cos

[
bky + 2πφ

(n)
I3BB

] + V, (B26)

ε
(n)
kA′A′ = 2tI3 cos

[
bky + 2πφ

(n)
I3A′A′

] − V, (B27)

ε
(n)
kB ′B ′ = 2tI3 cos

[
bky + 2πφ

(n)
I3B ′B ′

] − V, (B28)

ε
(n)
kAB = ε

(n)∗
kBA

= tS1e
iakx + tI1 exp

[
i
(
akx − bky − 2πφ

(n)
I1AB

)]
,

(B29)
ε

(n)
kBA′ = ε

(n)∗
kA′B

= tS2e
iakx + tI2 exp

[
i
(
akx − bky − 2πφ

(n)
I2BA′

)]
,

(B30)

ε
(n)
kA′B ′ = ε

(n)∗
kB ′A′

= tS1e
iakx + tI1 exp

[
i
(
akx − bky − 2πφ

(n)
I1A′B ′

)]
,

(B31)

ε
(n)
kAA′ = ε

(n)∗
kA′A = tI4 exp

[
i
(
2akx − bky − 2πφ

(n)
I4AA′

)]
,

(B32)

ε
(n)
kBB ′ = ε

(n)∗
kB ′B = tI4 exp

[
i
(
2akx − bky − 2πφ

(n)
I4BB ′

)]
,

(B33)

F
(n)
k =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0

ε
′(n)
kA′A 0 0 0

ε
′(n)
kB ′A ε

′(n)
kB ′B 0 0

⎞
⎟⎟⎟⎠, (B34)

ε
′(n)
kA′A = tI4 exp

[
i
(
2akx − bky − 2πφ

′(n−1,n)
I4A′A

)]
, (B35)

ε
′(n)
kB ′B = tI4 exp

[
i
(
2akx − bky − 2πφ

′(n−1,n)
I4B ′B

)]
, (B36)

ε
′(n)
kB ′A = tS2 exp[iakx]

+ tI2 exp
[
i
(
akx − bky − 2πφ

′(n−1,n)
I2B ′A

)]
. (B37)

The matrix of Eq. (B23) can be numerically diagonalized.
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