One-pot synthesis of 2-oxa-7-azaspiro[4.4]nonane-8,9-diones using Mn(III)based oxidation of 4-acylpyrrolidine-2,3-diones

Thanh-Truc Huynh, ${ }^{\text {a }}$ Van-Ha Nguyen, ${ }^{\text {b }}$ and Hiroshi Nishino ${ }^{\text {c* }}$
${ }^{a}$ Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto 860-8555, Japan
${ }^{b}$ Department of Chemistry, Dalat University, 1 Phu Dong Thien Vuong St., Dalat, Vietnam
${ }^{c}$ Department of Chemistry, Faculty of Science, Kumamoto University, Kurokami 2-39-1, Chûou-Ku, Kumamoto 860-8555, Japan

Supplementary data

Spectroscopic data of the products 3ba, 3ca, 3da, 3ea, 3ab, and the copies of ${ }^{1} \mathrm{H} N M R,{ }^{13} \mathrm{C}$ NMR, DEPT, COSY, NOESY, HMQC, and HMBC spectra for the new compounds 3 and 4.

[^0]Manganese(III)-based reaction of a mixture of 1,1-diarylethenes 1a-e and 2,3-pyrrolidinediones 2a-e in glacial acetic acid. 1,1-Diarylethene $\mathbf{1}(1 \mathrm{mmol})$ was weighed into a 50 mL flask equipped with a magnetic stirrer. Glacial acetic acid $(15 \mathrm{~mL})$ and pyrrolidine-2,3-dione $2(1.5-3 \mathrm{mmol})$ were added to the flask. The flask was placed in an oil bath and fitted with a reflux condenser. The mixture was stirred in air and heated just before refluxing, and manganese (III) acetate dihydrate ($3-5 \mathrm{mmol}$) was then added. The reaction was heated under reflux until the reaction mixture turned colorless or yellow (normally for 3 min). The solvent was removed in vacuo, and the residue was triturated with water. The aqueous mixture was extracted with chloroform ($15 \mathrm{~mL} \times 3$). The extracts were combined and dried over anhydrous sodium sulfate, filtered and then concentrated to dryness. The products were separated on silica gel TLC (Wakogel B-10, B-5F, or Merck Kieselgel $60 \mathrm{~F}_{254}$) with methanol/dichloromethane ($1: 99 \mathrm{v} / \mathrm{v}$) as the developing solvent. The solid products were further recrystallized by indicated solvent.

7-Benzyl-3,3-diphenyl-1-(propan-2-ylidene)-2-oxa-7-azaspiro[4.4]nonane-8,9-dione (3ba): yellowish cubes (from chloroform/hexane); mp 157-158 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) 1762.8(-\mathrm{CO}-), 1714.6(-$ CON-); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.19(13 \mathrm{H}, \mathrm{m}, \operatorname{arom~H}), 7.13-7.11(2 \mathrm{H}, \mathrm{m}, \operatorname{arom~H}), 4.53$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.03\left(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-6\right), 2.87\left(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-4\right), 2.86(1 \mathrm{H}, \mathrm{d}, J=12.3$ $\left.\mathrm{Hz}, \mathrm{H}_{\mathrm{b}}-4\right), 2.81\left(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-6\right), 1.83(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-12), 1.16(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-11) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.4$ (C-9), 158.3 (C-8), 148.9 (C-1), 143.6, $143.0,134.1$ (arom C), 128.9 (2C), 128.53 (2C), 128.51 (2C), 128.4, 128.3 (2C), 127.6, 127.5, 125.7 (2C), 125.4 (2C) (arom CH), 103.0 (C-10), 88.2 (C-3), 53.6 (C-6), 53.1 (C-4), $51.4(\mathrm{C}-5), 48.3\left(\mathrm{CH}_{2}\right), 18.9(\mathrm{Me}), 17.5(\mathrm{Me})$. Anal Calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{3}$: C, 79.61; H, 6.22; N, 3.20. Found: C, $79.35 ; \mathrm{H}, 6.24 ; \mathrm{N}, 3.16$.

7-Benzyl-3,3-bis(4-fluorophenyl)-1-(propan-2-ylidene)-2-oxa-7-azaspiro[4.4]nonane-8,9-dione (3ca): colorless needles (from chloroform/hexane); mp 179-180 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) 1762.8(-\mathrm{CO}-)$, $1720.4(-\mathrm{CON}-) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.33(3 \mathrm{H}, \mathrm{m}$, arom H$), 7.30-7.26(2 \mathrm{H}, \mathrm{m}$, arom H), 7.21-7.19 $(2 \mathrm{H}, \mathrm{m}, \operatorname{arom} \mathrm{H}), 7.16-7.14(2 \mathrm{H}, \mathrm{m}, \operatorname{arom} \mathrm{H}), 6.99-6.94(4 \mathrm{H}, \mathrm{m}, \operatorname{arom} \mathrm{H}), 4.60(1 \mathrm{H}, \mathrm{d}$, $\left.J=14.2 \mathrm{~Hz}, \underline{\mathrm{H}}_{\mathrm{a}}-\mathrm{CH}\right), 4.53\left(1 \mathrm{H}, \mathrm{d}, J=14.2 \mathrm{~Hz}, \mathrm{HC}-\underline{H}_{\mathrm{b}}\right), 3.05\left(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-6\right), 2.84(1 \mathrm{H}$, d, $\left.J=12.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-4\right), 2.79\left(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-6\right), 2.77\left(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-4\right), 1.81(3 \mathrm{H}, \mathrm{s}$, Me-12), 1.17 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-11$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.2(\mathrm{C}-9), 162.1\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J=245.8\right.$ $\mathrm{Hz}), 162.0\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J=246.0 \mathrm{~Hz}\right), 158.2(\mathrm{C}-8), 148.9(\mathrm{C}-1), 139.1\left(1 \mathrm{C},{ }^{4} J=3.8 \mathrm{~Hz}\right), 138.6\left(1 \mathrm{C},{ }^{4} J=\right.$ $3.8 \mathrm{~Hz}), 134.0(\operatorname{arom} \mathrm{C}), 129.0(2 \mathrm{C}), 128.6(2 \mathrm{C}), 128.4,127.6\left(2 \mathrm{C},{ }^{3} J=8.1 \mathrm{~Hz}\right), 127.5\left(2 \mathrm{C},{ }^{3} J=7.9\right.$ $\mathrm{Hz}), 115.5\left(2 \mathrm{C},{ }^{2} J=21.4 \mathrm{~Hz}\right), 115.2\left(2 \mathrm{C},{ }^{2} J=21.5 \mathrm{~Hz}\right)(\operatorname{arom~CH}), 103.6(\mathrm{C}-10), 87.4(\mathrm{C}-3), 53.6$ (C-6), 53.3 (C-4), $51.5(\mathrm{C}-5), 48.4\left(\mathrm{CH}_{2}\right), 18.9(\mathrm{Me}), 17.6(\mathrm{Me})$. Anal Calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{NO}_{3}: \mathrm{C}$, 73.56; H, 5.32; N, 2.96. Found: C, 73.55; H, 5.20; N, 3.05.

7-Benzyl-3,3-bis(4-chlorophenyl)-1-(propan-2-ylidene)-2-oxa-7-azaspiro[4.4]nonane-8,9-dione (3da): yellowish needles (from chloroform/diethyl ether); mp 184.5-185.5 ${ }^{\circ} \mathrm{C}$; IR (CHCl_{3}) 1762.8 $(-\mathrm{CO}-), 1714.6(-\mathrm{CON}-) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.34(3 \mathrm{H}, \mathrm{m}$, arom H$)$, 7.25-7.22 (6 H , m , arom H), 7.17-7.14 ($4 \mathrm{H}, \mathrm{m}$, arom H), $4.58\left(1 \mathrm{H}, \mathrm{d}, J=14.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-\mathrm{CH}\right), 4.53(1 \mathrm{H}, \mathrm{d}, J=14.2 \mathrm{~Hz}$, $\left.\mathrm{HC}-\mathrm{H}_{\mathrm{b}}\right), 3.07\left(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-6\right), 2.82\left(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-4\right), 2.81(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}$, $\left.\mathrm{H}_{\mathrm{b}}-6\right), 2.79\left(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-4\right), 1.80(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-12), 1.17(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-11)$; ${ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta 199.0(\mathrm{C}-9), 158.1(\mathrm{C}-8), 148.4(\mathrm{C}-1), 141.4,141.2,133.9,133.8,133.7$ (arom C), 129.0 (2C), 128.3 (2C), 128.6 (2C), 128.53, (2C), 128.48, 127.0 (2C), 126.8 (2C) (arom CH), 103.8 (C-10), 87.3 (C-3), 53.6 (C-6), $52.8(\mathrm{C}-4), 51.3(\mathrm{C}-5), 48.3\left(\mathrm{CH}_{2}\right), 18.9(\mathrm{Me}), 17.5(\mathrm{Me})$. Anal Calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{NO}_{3} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 67.58 ; \mathrm{H}, 5.08$; N, 2.72. Found: C, $67.83 ; \mathrm{H}, 4.99 ; \mathrm{N}, 2.72$.

[^1]$\left.\mathrm{Hz}, \mathrm{H}_{\mathrm{a}}-6\right), 2.85\left(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-6\right), 2.83\left(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-4\right), 2.76(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}$, $\left.\mathrm{H}_{\mathrm{b}}-4\right), 1.79(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-12), 1.15(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-11) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.6$ (C-9), 158.9 (C-8), 149.0 (C-1), 158.7, 158.4, 135.7, 134.9, 134.1 (arom C), 128.9 (2C), 128.5, 128.3 (2C), 127.2 (2C), 126.8 (2C), $113.8(2 \mathrm{C}), 113.5(2 \mathrm{C})($ arom CH), 102.7 (C-10), 87.9 (C-3), 55.21, 55.19 (OMe), 53.7 (C-6), 53.4 (C-4), $51.8(\mathrm{C}-5), 48.3\left(\mathrm{CH}_{2}\right), 18.9(\mathrm{Me}-12), 17.5(\mathrm{Me}-11)$. Anal Calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{NO}_{5} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 74.16 ; \mathrm{H}, 6.32$; N, 2.79. Found: C, 74.16; H, 6.37; N, 2.73.

7-Benzyl-1-ethylidene-3,3-bis(4-methylphenyl)-2-oxa-7-azaspiro[4.4]nonane-8,9-dione (3ab): colorless needles (from chloroform/hexane); mp 184-185 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) 1766.7$ (-CO-), 1714.6 (-CON-); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.32(3 \mathrm{H}, \mathrm{m}$, arom H), $7.25-7.23(2 \mathrm{H}, \mathrm{m}$, arom H), $7.20-$ $7.151(4 \mathrm{H}, \mathrm{m}, \operatorname{arom} \mathrm{H}), 7.107-7.08(4 \mathrm{H}, \mathrm{m}$, arom H$), 4.68\left(1 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-\mathrm{CH}\right), 4.45(1 \mathrm{H}, \mathrm{d}$, $\left.J=14.3 \mathrm{~Hz}, \mathrm{HC}-\mathrm{H}_{\mathrm{b}}\right), 4.03(1 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}, \mathrm{H}-10), 3.13\left(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-4\right), 3.05(1 \mathrm{H}, \mathrm{d}, J$ $\left.=11.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-6\right), 3.03\left(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-6\right), 2.76\left(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-4\right), 2.33(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 2.29 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 1.68 ($3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{Me}-11$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.1$ (C-9), 158.6 (C-8), 156.5 (C-1), 140.8, 140.60, 137.4, 137.2, 134.2 (arom C), 129.2 (2C), 128.9 (2C), 128.8 (2C), 128.5 (2C), 128.3, 125.8 (2C), 125.4 (2C) (arom CH), 94.3 (C-10), 89.4 (C-3), 55.9 (C-6), 52.4 (C5), $48.6\left(\mathrm{CH}_{2}\right), 48.4(\mathrm{C}-4), 20.99(\mathrm{Me}), 20.98(\mathrm{Me}), 10.7(\mathrm{Me}-11)$. Anal Calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{NO}_{3} \bullet 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 78.23 ; \mathrm{H}, 6.57$; N, 3.04. Found: C, 78.38; H, 6.42; N, 3.07.

(mdd) lf

(mdd) LI

(wdd) lf

(mdd) Lf

(madd) lt

(mdd) lt

(mdd) lf

(mdd) lf

(mdd) lt

(mdd) L!

(udd) lt

(mdd) lf

(udd) Lf

(udd) lt

(mdd) lt

(mdd) lt

Ste							率年		嘍等		${ }_{+}^{+}$	
	4		Γ					｜				
	＜											
						1						
			λ									
			＋		荳	等 䉍		鯨	藐			

(wdd) lt

(mdd) lt

(udd) LI

(madd) LI

(udd) lf

(mdd) lt

(mdd) lf

(mdd) lt

cink									\%	$\stackrel{8}{8}$				$\square^{0.065}$
*														
T)														
1														
3ae at 5														
manumuman		manum	(1)	mambum	mm	mumm	mum	mumumm	m	,			mumumum	max

(udd) LI

(mdd) lt

			$\stackrel{5}{4}$								$\stackrel{5}{3}_{\substack{\text { b }}}^{\text {b }}$	ํ.ํํํํ		${ }^{0.75}$
\square														
+														${ }^{0.50}$
														${ }_{\text {- }}^{0.55}$
														Ons
														${ }^{0.35}$
														${ }^{0.30}$
														${ }^{0.15}$
														.10
mmumumumumummumym									ment		4	Nummmum		mo.00

3,3-Bis(4-methylphenyl)-7-methyl-6-phenyl-1-(propan-2-ylidene)-
 2-oxa-7-azaspiro[4.4]nonane-8,9-dione (3ae)

$$
\text { June 9, } 2017
$$

Fig. 3. X-ray crystal structure of the product 3ae

Data Collection

A colorless block crystal of $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{NO}_{3}$ having approximate dimensions of 0.370 $\times 0.327 \times 0.187 \mathrm{~mm}$ was mounted on a glass fiber. All measurements were made on a Rigaku R-AXIS RAPID diffractometer using graphite monochromated Mo-K α radiation.

The crystal-to-detector distance was 127.40 mm .
Cell constants and an orientation matrix for data collection corresponded to a primitive triclinic cell with dimensions:

$$
\begin{array}{lll}
a=9.6559(4) \AA & \alpha=75.345(2)^{\circ} \\
b=9.9138(5) \AA & \beta=69.807(2)^{\circ} \\
c=14.9614(8) \AA & \gamma=78.722(1)^{\circ} \\
V=1291.2(1) \AA 3 &
\end{array}
$$

For $Z=2$ and F.W. $=465.59$, the calculated density is $1.197 \mathrm{~g} / \mathrm{cm}^{3}$. Based on a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be:
P-1 (\#2)

The data were collected at a temperature of $23 \pm 1^{\circ} \mathrm{C}$ to a maximum 2θ value of 54.90. A total of 44 oscillation images were collected. A sweep of data was done using ω scans from 130.0 to 190.0° in 5.0° step, at $\chi=45.0^{\circ}$ and $\phi=0.0^{\circ}$. The exposure rate was 120.0 [sec. $/ 0$]. A second sweep was performed using ω scans from 0.0 to 160.0° in 5.0^{0} step, at $\chi=45.0^{\circ}$ and $\phi=180.0^{\circ}$. The exposure rate was 120.0 [sec. ${ }^{\circ}$]. The crystal-todetector distance was 127.40 mm . Readout was performed in the 0.100 mm pixel mode.

Of the 12647 reflections that were collected, 5759 were unique ($\mathrm{R}_{\mathrm{int}}=0.0259$).

The linear absorption coefficient, μ, for Mo-K α radiation is $0.763 \mathrm{~cm}^{-1}$. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods ${ }^{1}$ and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement ${ }^{2}$ on F^{2} was based on 5759 observed reflections and 316 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

$$
\begin{gathered}
R_{1}=\Sigma \text { IIFol }- \text { IFcII } / \Sigma \text { IFol }=0.0688 \\
\mathrm{w} R_{2}=\left[\Sigma\left(\mathrm{w}^{2}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}\right) / \Sigma \mathrm{w}\left(\mathrm{Fo}^{2}\right)^{2}\right]^{1 / 2}=0.2614
\end{gathered}
$$

The standard deviation of an observation of unit weight ${ }^{3}$ was 1.13. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.33 and $-0.36 \mathrm{e}^{-} / \mathrm{A}^{3}$, respectively.

Neutral atom scattering factors were taken from Cromer and Waber4. Anomalous dispersion effects were included in Fcalc 5 ; the values for Δf^{\prime} and $\Delta f^{\prime \prime}$ were those of Creagh and McAuley ${ }^{6}$. The values for the mass attenuation coefficients are those of Creagh and Hubbell ${ }^{7}$. All calculations were performed using the CrystalStructure ${ }^{8}$ crystallographic software package except for refinement, which was performed using SHELXL-979.

References

(1) SIR2008: M.C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G.L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, D. Siliqi, R. Spagna (2007)
(2) Least Squares function minimized: (SHELXL97)

$$
\Sigma w\left(F_{0}^{2}-F_{c}^{2}\right)^{2} \quad \text { where } w=\text { Least Squares weights. }
$$

(3) Standard deviation of an observation of unit weight:

$$
\begin{aligned}
& {\left[\Sigma w\left(\mathrm{~F}_{\mathrm{O}}{ }^{2}-\mathrm{F}_{\mathrm{c}}^{2}\right)^{2} /\left(\mathrm{N}_{\mathrm{O}}-\mathrm{N}_{\mathrm{V}}\right)\right]^{1 / 2}} \\
& \text { where: } \quad \mathrm{N}_{\mathrm{o}}=\text { number of observations } \\
& \quad \mathrm{N}_{\mathrm{V}}=\text { number of variables }
\end{aligned}
$$

(4) Cromer, D. T. \& Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).
(5) Ibers, J. A. \& Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).
(6) Creagh, D. C. \& McAuley, W.J .; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).
(7) Creagh, D. C. \& Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).
(8) CrystalStructure 4.0: Crystal Structure Analysis Package, Rigaku Corporation (20002010). Tokyo 196-8666, Japan.
(9) SHELX97: Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

A. Crystal Data

Empirical Formula	$\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{NO}_{3}$
Formula Weight	465.59
Crystal Color, Habit	colorless, block
Crystal Dimensions	$0.370 \times 0.327 \times 0.187 \mathrm{~mm}$
Crystal System	triclinic
Lattice Type	Primitive
Lattice Parameters	$\begin{aligned} & a=9.6559(4) \AA \\ & b=9.9138(5) \AA \\ & c=14.9614(8) \AA \\ & \alpha=75.345(2)^{\circ} \\ & \beta=69.807(2)^{\circ} \\ & \gamma=78.722(1)^{\circ} \\ & V=1291.2(1) \AA \end{aligned}$
Space Group	P-1 (\#2)
Z value	2
$D_{\text {calc }}$	$1.197 \mathrm{~g} / \mathrm{cm}^{3}$
F_{000}	496.00
$\mu(\mathrm{MoK} \alpha)$	$0.763 \mathrm{~cm}^{-1}$

B. Intensity Measurements

Diffractometer	R-AXIS RAPID
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71075 \AA$) graphite monochromated
Voltage, Current	50 kV , 40mA
Temperature	$23.0{ }^{\circ} \mathrm{C}$
Detector Aperture	$280 \times 256 \mathrm{~mm}$
Data Images	44 exposures
ω oscillation Range ($\chi=45.0, \phi=0.0$)	130.0-190.0 ${ }^{\circ}$
Exposure Rate	$120.0 \mathrm{sec} .{ }^{\circ}$
ω oscillation Range ($\chi=45.0, \phi=180.0$)	0.0-160.0 ${ }^{\circ}$
Exposure Rate	$120.0 \mathrm{sec} .{ }^{\circ}$
Detector Position	127.40 mm
Pixel Size	0.100 mm
$2 \theta_{\text {max }}$	$54.9{ }^{\circ}$
No. of Reflections Measured	Total: 12647 Unique: $5759\left(\mathrm{R}_{\mathrm{int}}=0.0259\right)$
Corrections	Lorentz-polarization

C. Structure Solution and Refinement

Structure Solution	Direct Methods
Refinement	Full-matrix least-squares on F^{2}
Function Minimized	$\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$
Least Squares Weights	$\begin{aligned} & \mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{Fo}^{2}\right)+(0.1177 \cdot \mathrm{P})^{2}\right. \\ & +0.5065 \cdot \mathrm{P}] \\ & \text { where } \mathrm{P}=\left(\operatorname{Max}\left(\mathrm{Fo}^{2}, 0\right)+2 \mathrm{Fc}^{2}\right) / 3 \end{aligned}$
$2 \theta_{\text {max }}$ cutoff	54.90
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	5759
No. Variables	316
Reflection/Parameter Ratio	18.22
Residuals: R1 (l>2.00\%(I))	0.0688
Residuals: R (All reflections)	0.1444
Residuals: wR2 (All reflections)	0.2614
Goodness of Fit Indicator	1.131
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$0.33 \mathrm{e}^{-} / \AA^{3}$
Minimum peak in Final Diff. Map	$-0.36 e^{-/ 1}{ }^{3}$

[^0]: * Corresponding author. Tel.: +81-96-342-3374; fax: +81-96-342-3374; e-mail: nishino@sci.kumamoto-u.ac.jp

[^1]: 7-Benzyl-3,3-bis(4-methoxylphenyl)-1-(propan-2-ylidene)-2-oxa-7-azaspiro[4.4]nonane-8,9dione (3ea): yellowish needles (from chloroform/diethyl ether); $\mathrm{mp} 155-156{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 1760.9$ $(-\mathrm{CO}-), 1714.6(-\mathrm{CON}-) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.31(3 \mathrm{H}, \mathrm{m}$, arom H$), 7.25-7.21(2 \mathrm{H}$, m , arom H), $7.15-7.12\left(4 \mathrm{H}, \mathrm{m}\right.$, arom H), $6.80-6.77\left(4 \mathrm{H}, \mathrm{m}\right.$, arom H), $4.54\left(1 \mathrm{H}, \mathrm{d}, J=15.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-\right.$ $\mathrm{CH}), 4.53\left(1 \mathrm{H}, \mathrm{d}, J=15.1 \mathrm{~Hz}, \mathrm{HC}-\mathrm{H}_{\mathrm{b}}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.05(1 \mathrm{H}, \mathrm{d}, J=11.8$

