Graphical Abstract

To create your abstract, type over the instructions in the template box below.
Fonts or abstract dimensions should not be changed or altered.
One-pot synthesis of 2-oxa-7-
azaspiro[4.4]nonane-8,9-diones using
Mn(III)-based oxidation of 4-
acylpyrrolidine-2,3-diones
Thanh-Truc Huynh, ${ }^{\text {a }}$ Van-Ha Nguyen, ${ }^{\text {b }}$ Hiroshi Nishino ${ }^{\text {c* }}$

Leave this area blank for abstract info. ing acylpyrrolidine-2,3-diones
Thanh-Truc Huynh, ${ }^{\text {a }}$ Van-Ha Nguyen, ${ }^{\text {b }}$ Hiroshi Nishino ${ }^{\text {c }}$ *

$R^{1}, R^{2}=$ alkyl and/or $H ; R^{3}=H, P h ; R^{4}=B n, M e$

One-pot synthesis of 2-oxa-7-azaspiro[4.4]nonane-8,9-diones using Mn(III)based oxidation of 4-acylpyrrolidine-2,3-diones ${ }^{\dagger}$

Thanh-Truc Huynh, ${ }^{a}$ Van-Ha Nguyen, ${ }^{\text {b }}$ and Hiroshi Nishino ${ }^{\text {c* }}$
${ }^{a}$ Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto 860-8555, Japan
${ }^{b}$ Department of Chemistry, Dalat University, I Phu Dong Thien Vuong St., Dalat, Vietnam
${ }^{c}$ Department of Chemistry, Faculty of Science, Kumamoto University, Kurokami 2-39-1, Chûou-Ku, Kumamoto 860-8555, Japan

ARTICLE INFO

Article history:

Received
Received in revised form
Accepted
Available online
Keywords:
Oxaazaspiro[4.4]nonanedione
Oxidation
1,1-Diarylethenes
4-Acylpyrrolidine-2,3-diones
Manganese(III) acetate
Cycloaddition

Abstract

2-Oxa-7-azaspiro[4.4]nonane-8,9-diones were newly synthesized in good yields by the Mn (III)based reaction of a mixture of 1,1-diarylethenes and 4-acylpyrrolidine-2,3-diones. Under the stated reaction conditions, the pyrrolidinedione ring remained intact and became one of the two rings of the 2-oxa-7-azaspiro[4.4]nonanedione scaffold. The procedure was simple and the product was easily separated. The structure determination and the mechanism for the formation of the 2-oxa-7-azaspiro[4.4]nonanediones were also discussed.

2017 Elsevier Ltd. All rights reserved.

1. Introduction

The Mn (III)-based oxidation is a powerful tool in organic synthesis, and new applications and protocols have been continuously reported. ${ }^{1,2}$ Tetrahydrofuran derivatives are found in many natural compounds, some of which derived from tetrose, pentose, hexose, and glycoside, have a significant biological importance. ${ }^{3}$ Pyrrolidinediones have displayed an interesting biological activity and been used as an inhibitor of aldose reductase ${ }^{4}$ and endothelin receptor antagonists. ${ }^{5}$ Pyrrolidinediones ${ }^{6}$ were also used as a versatile reagent for the preparation of β-lactams. ${ }^{7}$ We previously reported a unique synthesis of spirodi- γ-lactones, ${ }^{8 a}$ spirodioxanes, ${ }^{8 b}$ trioxaspiro compounds, ${ }^{8 \mathrm{c}}$ dioxatricyclic ${ }^{8 \mathrm{~d}}$ and oxa-aza-tricyclic compounds, ${ }^{\text {8e }}$ spirofurans, ${ }^{8 \mathrm{f}}$ and aza-spiro compounds ${ }^{8 \mathrm{~g}}$ using manganese(III) acetate dihydrate, $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. In the course of our study, we found a simple and straightforward route based on the Mn (III) oxidation for the synthesis of new pyrrolidine-2,3-diones I with an ethenyl group substituted at the α-position of the carbonyl group (Scheme 1). ${ }^{9,10}$ At that time, we anticipated producing a spiro compound (path a), but the deprotonation was fast under the stated conditions (path b). Based on these results, we postulated if the presence of a keto-carbonyl group at the C-4 position of the pyrrolidine-2,3-dione instead of an ester could allow the cyclization to produce a spiro bicyclic compound such as a furan connected through the α-carbon of the pyrrolidinediones. We then attempted to verify this idea using the Mn (III)-based oxidation of

1,1-diarylethenes with 4-acylpyrrolidine-2,3-diones as the starting material. As a result, the cyclization proceeded at the carbonyl oxygen and new 1-exomethylene-2-oxa-7-azaspiro[4.4]nonane8,9 -dione derivatives were produced in good yields as expected.

Scheme 1. Mn(III)-based reaction of alkene with 4-hydroxy-5-oxo-2,5-dihydropyrrole-3-carboxylate

2. Results and discussion

The pyrrolidine-2,3-diones $\mathbf{2 a - e}{ }^{9,11}$ were prepared by the condensation of 2,4-dioxoalkanoates ${ }^{12}$ with N-benzyl or N methylmethanimines. ${ }^{13}$ The pyrrolidinediones were purified by silica gel column chromatography, then recrystallization. With the starting material of the pyrrolidinediones 2a-e in hand, we commenced the Mn (III)-based oxidation in the presence of 1,1-

[^0]

Scheme 2. Mn (III)-based reaction of alkenes 1a-e with 4-acylpyrrolidine-2,3-diones 2a-e
disubstituted alkenes. 1,1-Bis(4-methylphenyl)ethene (1a) and 1-benzyl-4-isobutyrylpyrrolidine-2,3-dione (2a) were first selected and the reaction using $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ was carried out in glacial acetic acid at $70^{\circ} \mathrm{C}$. Since the oxidant was consumed in 16 min , the reaction was quenched and the mixture was worked up. Gratifyingly, the desired 2-oxa-7-azaspiro compound 3aa was obtained in 38% isolated yield (Scheme 2 and Table 1, Entry 1).

When a similar reaction was performed at reflux temperature, the reaction was finished in 2 min and the yield of 3aa was significantly improved (Entry 2). We then optimized the reaction and the maximum yield of 3aa was 90% (Entry 4). The structure of 3aa was determined by IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{13} \mathrm{C}$ DEPT spectra, a 2D NMR study and elemental analysis. The presence of the dimethylmethylene group and C-5 spiro carbon was confirmed by the NMR spectrum, and the HMBC experiment was also in good agreement with the structure of 7-benzyl-3,3-bis(4-methylphenyl)-1-(propan-2-ylidene)-2-oxa-7-azaspiro[4.4]nonane-8,9-dione (Fig. 1). ${ }^{14}$

Having succeeded in the synthesis of the anticipated spiro compound 3aa, we turned our attention to a similar reaction using the other 1,1-diarylethenes 1b-e. The reaction was conducted under similar conditions and the corresponding 2-oxa-7-azaspiro[4.4]-nonane-8,9-diones 3ba-ea were obtained in good yields (Table 1, Entries 5-8). The use of 4-propionylpyrrolidine-2,3-dione 2b instead of 2a also gave the 2-oxa-7-azaspiro compound 3ab in 81% yield (Entry 9). Although the reaction of 5-phenyl-4-propionyl- 2c and the 4-butyryl-5-phenyl-pyrrolidine-2,3-diones $2 \mathbf{d}$, both bearing a phenyl group at the C-5 position of

Fig. 1. Important ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts (left) and HMBC study of 3aa (right)
the pyrrolidinedione, led to a similar result (Entries 10 and 11), the reaction using 4-isobutyryl-1-methyl-5-phenylpyrrolidine-2,3dione ($\mathbf{2 e}$) resulted in the decreased yield of the desired product (Entry 12). However, after a thorough chromatographic separation, 1-hydroxy-1-isopropyl-3,3-bis(4-methylphenyl)-7-methyl-6-phenyl-2-oxa-7-azaspiro[4.4]nonane-8,9-dione (4) was also isolated in 22% yield probably due to the addition of water during the reaction (vide infra). ${ }^{15}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of the 6 -phenyl-2-oxa-7-azaspiro[4.4]nonane-8,9-diones 3ac, 3ad, and 3ae deserves comments. ${ }^{16-18}$ The ortho-protons of the phenyl group appeared around $\delta 6.3$ as a broad singlet because of the rotational barrier of the phenyl group by the $\mathrm{C}-1$ exomethylene group (Fig. 2). Simultaneously, the H-4 proton (ca. $\delta 3.4$) was deshielded by the ring current effect of one of the C-3 aryl groups. When the NMR spectrum of $\mathbf{3 a e}$ was taken in CDCl_{3} at $50^{\circ} \mathrm{C}$, the broad peak of the phenyl protons became sharp (See Supplementary data). In addition, the $\mathrm{H}-10 \mathrm{sp}^{2}$ proton ($\delta 3.37$) of $\mathbf{3 a c}$ and $\mathbf{3 a d}$, and the C 11 methyl group ($\delta 0.67$) of 3ae were shielded by the anisotropic effect of the C-9 carbonyl group. In the case of the by-product 4, the anisotropic effect of the C-9 carbonyl group was extremely strong toward one of the methyl groups of the isopropyl group, showing $\delta 0.00\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}\right.$) (Fig. 3). ${ }^{15}$ Fortunately, we got a single crystal of 3ae from chloroform and finally established the structure by an X-ray crystallographic measurement (Fig. 4 and supplementary data). ${ }^{19}$

Table 1. Mn(III)-based reaction of 1,1-diarylethenes 1a-e with pyrrolidine-2,3-diones 2a-e ${ }^{\text {a }}$

Entry	Ethene/1	Pyrrolidinedione/2	1:2:Mn(OAc) ${ }^{\text {b }}$	Temp/ $/{ }^{\circ} \mathrm{C}$	Time/min	3/Yield/\% ${ }^{\text {c }}$
1	1a: $\mathrm{Ar}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$	2a: $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{4}=\mathrm{Bn}$	1:1.5:3	70	16	3aa (38)
2	1a	2a	1:1.5:3	reflux	2	3aa (67)
3	1a	2a	1:2:3	reflux	3	3aa (87)
4	1a	2a	1:3:5	reflux	3	3 aa (90)
5	1b: $\mathrm{Ar}=\mathrm{Ph}$	2a	1:3:5	reflux	3	3ba (87)
6	1c: $\mathrm{Ar}=4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}$	2a	1:3:5	reflux	3	3ca (74)
7	1d: $\mathrm{Ar}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	2a	1:2:3	reflux	3	3da (68)
8	1e: $\mathrm{Ar}=4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}$	2a	1:2:3	reflux	3	3ea (60)
9	1a: $\mathrm{Ar}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$	2b: $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{4}=\mathrm{Bn}$	1:2:3	reflux	3	3ab (81)
10	1a	2c: $\mathrm{R}^{1}=\mathrm{R}^{4}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Ph}$	1:3:5	reflux	3	3ac (83)
11	1a	2d: $\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Ph}, \mathrm{R}^{4}=\mathrm{Me}$	1:3:5	reflux	3	3 ad (80)
12	1a	2e: $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{4}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{Ph}$	1:3:5	reflux	3	3ae (60) ${ }^{\text {d }}$

[^1]
3ad

Fig. 2. Important ${ }^{1} \mathrm{H}$ chemical shifts, NOE (left) and HMBC study (right) of 3ad (upper) and 3ae (lower)

It was reported that the $\mathrm{Mn}(\mathrm{III})$-enolate complex formation is the rate-determining step in the $\mathrm{Mn}(\mathrm{III})$-based reaction of the α -alkyl-substituted 1,3-dicarbonyl compounds with alkenes. ${ }^{1 \mathrm{c}, 20}$ In this case, a similar enolization of $\mathbf{2}$ with $\mathrm{Mn}(\mathrm{OAc})_{3}$ would occur during the first stage, producing complex \mathbf{A} (Scheme 3). Complex \mathbf{A} is electron deficient, thus an electron-rich alkene $\mathbf{2}$ should be easily oxidized to give radical \mathbf{B}, which would be further oxidized to produce the carbocation \mathbf{C}. The cation \mathbf{C} would spontaneously cyclize with the carbonyl oxygen and undergo subsequent β proton elimination that produces the 2-oxa-7-azaspiro compounds 3. The formation of the stable tertiary carbocation \mathbf{C} is crucial for the next O-cyclization to produce $\mathbf{3}$. In fact, the reaction using styrene and terminal alkenes such as 1-hexene was complicated. When 4-isobutyryl-1-methyl-5-phenylpyrrolidine-2,3-dione (2e) was subjected to the oxidation, the desired 1-exomethylene-2-oxa-7-azaspiro compound 3ae was mainly produced along with the hydroxy-2-oxa-7-azaspiro compound 4 formed by nucleophilic addition of water to the intermediate cation \mathbf{D} due to relief of the steric hindrance.

In conclusion, our initial forecast was proved to be correct by the fact that the 2-oxa-7-azaspiro[4.4]nonane-8,9-dione derivatives $\mathbf{3}$ containing tetrahydrofuran and 2,3-pyrrolidinedione rings could be successfully synthesized in good yields by the Mn (III) oxidation of a mixture of 1,1-diarylethenes 1 and 4-acylpyrrolidine-2,3-diones $\mathbf{2}$. The reaction was straightforward, the reaction time was significantly short, and the procedure was simple to obtain the desired product 3. In addition, the structures of the products $\mathbf{3}$ and $\mathbf{4}$ were well characterized by spectroscopic methods including the X-ray single crystal analysis of 3ae, and the mechanism for the formation of the products $\mathbf{3}$ and $\mathbf{4}$ was logically interpreted by the $\mathrm{Mn}(\mathrm{III})$-based oxidation chemistry. ${ }^{1,2,20,21}$ Further optimization of the reactions listed in Table 1, application of the reaction using the pyrrolidinediones 2 bearing other
substituents, and bioassay of the pyrrolidinediones 2 and the products 3 for antibacterial, antiviral, bactericidal, insecticidal, herbicidal activities are currently underway.

Scheme 3. Plausible mechanism for the formation of $\mathbf{3}$ and $\mathbf{4}$

Acknowledgments

This research was supported by a Grant-in-Aid for Scientific Research (C), No. 25410049, from the Japan Society for the Promotion of Science. We also acknowledge Nissan Chemical Industries, Ltd., and the Astellas Foundation for Research on Metabolic Disorders for their financial support.

Supplementary data

Experimental detail, spectroscopic data of the products 3ba, 3ca, 3da, 3ea, 3ab, and the copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, DEPT, COSY, NOESY, HMQC, and HMBC spectra for all the compounds $\mathbf{3}$ and $\mathbf{4}$, and X-ray brief report of 3ae.

References and notes

1. Reviews for the $\mathrm{Mn}(\mathrm{III})$-based oxidation: (a) de Klein, W. J. in Organic Syntheses by Oxidation with Metal Compounbds, Eds. Mijis, W. J.; de Jonge, C. R. H. I., Plenum Press, New York, 1986, pp 261-314. (b) Iqbal, J.; Bhatia, B.; Nayyar, N. K. Chem. Rev. 1994, 94, 519-564. (c) Snider, B. B. Chem. Rev. 1996, 96, 339-363. (d) Melikyan, G. G. Org. React. 1997, 49, 427-675.
2. Recent reviews for the $\mathrm{Mn}(\mathrm{III})$-based oxidation: (a) Demir, A.S.; Emrullahoglu, M. Current Org. Synth. 2007, 4, 321-351. (b) Pan, X.Q.; Zou, J.-P.; Zhang, W. Mol. Divers. 2009, 13, 421-438. (c) Burton, J. W. "Manganese(III) Acetate, CAN, and Fe(III) Salts in Oxidative Radical Chemistry" in "Encyclopedia of Radicals in Chemistry, Biology and Materials," Eds. Chatgilialoglu, C.; Studer, A. Wiley, New York, 2012, pp 901-941. (d) Jahn, U. Top. Curr. Chem. 2012, 320, 121-190. (e) Mondal, M.; Bora, U. RSC Adv. 2013, 3, 18716-18754. (f) Wang, G.-W.; Li, F.-B. J. Nanosci. Nanotech. 2007, 7, 1162-1175. (g) Nishino, H. "Manganese(III)-Based Peroxidation of Alkenes to Heterocycles" in "Topics in Heterocyclic Chemistry, Bioactive Heterocycles I," Eguchi, S. ed., Springer: Berlin, 2006, 3976. (h) Terent'ev, A. O.; Borisov, D. A.; Vil', V. A.; Dembitsky, V. M. Beilstein J. Org. Chem. 2014, 10, 34-114.
3. Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications, $2^{\text {nd }}$ edn., Wiley, 2004.
4. (a) Balendiran, G. K.; Martin, H.-J.; El-Hawari, Y.; Maser, E. ChemBio. Int. 2009, $178(1-3), 134-137$. (b) Srivastava, S. K.; Ramana, K. V. U.S. Pat. Appl. Publ. (2009), US 20090270490 A1 20091029. (c) Verma, M.; Martin, H.-J.; Haq, W.; O'Connor, T. R.; Maser, E.; Balendiran, G. K. Eur. J. Pharm. 2008, 584, 213-221. (d) Goering, B. K. Ph.D. Dissertation, Cornell University, 1995.
5. Haslam, E. Shikimic Acid Metabolism and Metabolites, John Wiley \& Sons: New York, 1993.
6. (a) Vaughan, W. R.; Peters, L. R. J. Org. Chem. 1953, 18, 382-392. (b) Wasserman, H. H.; Ivest, J. L. J. Org. Chem. 1985, 50, 3573-3580.
7. (a) Buchanan, J. G.; Sable, H. Z. In Selective Organic Transformations; Thyagarajan, B. S., Ed.; Wiley-Interscience: New York, 1972; Vol. 2, pp 1-95. (b) Nishikawa, T.; Kajii, S.; Isobe, M. Chem. Lett. 2004, 33, 440-441. (c) Nubbemeyer, U. Top. Curr. Chem. 2001, 216, 125-196. (d) Ley, S. V.; Cox, L. R.; Meek, G. Chem. Rev. 1996, 96, 423-442.
8. (a) Ito, N.; Nishino, H.; Kurosawa, K. Bull. Chem. Soc. Jpn. 1983, 56, 3527-3528. (b) Qian, C.-Y.; Yamada, T.; Nishino, H.; Kurosawa, K. Bull. Chem. Soc. Jpn. 1992, 65, 1371-1378. (c) Yamada, T.; Iwahara, Y.; Nishino, H.; Kurosawa, K. J. Chem. Soc., Perkin Trans. 1, 1993, 609-616. (d) Nishino, H.; Hashimoto, H.; Korp, J. D.; Kurosawa, K. Bull. Chem. Soc. Jpn. 1995, 68, 1999-2009. (e) Nishino, H.; Ishida, K.; Hashimoto, H.; Kurosawa, K. Synthesis 1996, 888-896. (f) Fujino, R.; Nishino, H. Synthesis 2005, 731-740. (g) Tsubusaki, T.; Nishino, H. Tetrahedron 2009, 65, 9448-9459.
9. (a) Nguyen, V.-H.; Nishino, H.; Kurosawa, K. Tetrahedron Lett. 1997, 38, 1773-1776. (b) Nguyen, V.-H.; Nishino, H.; Kurosawa, K. Heterocycles 1998, 48, 465-480.
10. Chowdhury, F. A.; Nishino, H.; Kurosawa, K. Heterocycles 1999, 51, 575-591.
11. Emerson, D. W.; Titus, R. L.; Jones, M. D. J. Heterocycl. Chem. 1998, 35, 611-617.
12. (a) DeNinno, M. P.; Andrews, M.; Bell, A. S.; Chen, Y.; Zarbo, C. E.; Eshelby, N.; Etienne, J. B.; Moore, D. E.; Palmer, M. J.; Visser, M. S.; Yu, L. J.; Zavadoski, W. J.; Gibbs, E. M. Bioorg. Med. Chem. Lett. 2009, 19, 2537-2541. (b) Galenko, A. V.; Khlebnikov, A. F.; Novikov, M. S.; Avdontceva, M. S. Tetrahedron 2015, 71, 1940-1951.
13. (a) Sugimoto, H.; Nakamura, S.; Ohwada, T. Adv. Synth. Catal. 2007, 349, 669-679. (b) Campbell, K. N.; Sommers, A. H.; Campbell., B. K. J. Am. Chem. Soc. 1944, 66, 82.
14. The structure of 3aa was determined by spectroscopic methods, a 2D NMR study and elemental analysis.
7-Benzyl-3,3-bis(4-methylphenyl)-1-(propan-2-ylidene)-2-oxa-7-azaspiro[4.4]nonane-8,9-dione (3aa): yellow needles (from chloroform/hexane); mp 182.0-182.5 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) 1762.8(-\mathrm{CO}-)$, 1714.6 (-CON-); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.30(3 \mathrm{H}, \mathrm{m}$, $\operatorname{arom} \mathrm{H}), 7.22-7.20(2 \mathrm{H}, \mathrm{m}$, arom H$), 7.13-7.11(4 \mathrm{H}, \mathrm{m}$, arom H$), 7.07-$ $7.03(4 \mathrm{H}, \mathrm{m}$, arom H$), 4.56\left(1 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}, \mathrm{Ha}_{\mathrm{a}}-\mathrm{CH}\right), 4.52(1 \mathrm{H}, \mathrm{d}$, $\left.J=14.4 \mathrm{~Hz}, \mathrm{HC}-\mathrm{H}_{\mathrm{b}}\right), 3.04\left(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-6\right), 2.84(1 \mathrm{H}, \mathrm{d}, J=$ $\left.11.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-6\right), 2.83\left(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-4\right), 2.80(1 \mathrm{H}, \mathrm{d}, J=12.4$ $\left.\mathrm{Hz}, \mathrm{H}_{\mathrm{b}}-4\right), 2.31(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.26(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.80(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-12)$, $1.15(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-11)$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.5(\mathrm{C}-9)$, 158.4 (C-8), 149.0 (C-1), 140.6, 140.0, 137.3, 137.0, 134.1 (arom C), 129.1 (2C), 128.84 (2C), 128.82 (2C), 128.5 (2C), 128.3, 125.6 (2C), $125.4(2 \mathrm{C})(\operatorname{arom} \mathrm{CH}), 102.6(\mathrm{C}-10), 88.1(\mathrm{C}-3), 53.6(\mathrm{C}-6), 53.2(\mathrm{C}-$ 4), $51.7(\mathrm{C}-5), 48.3\left(\mathrm{CH}_{2}\right), 20.93(\mathrm{Me}), 20.90(\mathrm{Me}), 18.9(\mathrm{Me}-12)$, 17.5 (Me-11) ; FAB HRMS (acetone/NBA): calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{NO}_{3}$ $466.2382(\mathrm{M}+\mathrm{H})$; found 466.2365. Anal Calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{NO}_{3} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 78.45 ; \mathrm{H}, 6.58 ; \mathrm{N}, 2.95$. Found: C, 78.57 ; H, 6.73; N, 2.92.
15. The structure of $\mathbf{4}$ was determined by spectroscopic methods, an HMQC study and elemental analysis (Fig. 3).

Fig. 3. Important ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts of 4

1-Hydroxy-1-isopropyl-3,3-bis(4-methylphenyl)-7-methyl-6-
phenyl-2-oxa-7-azaspiro[4.4]nonane-8,9-dione (4): colorless cubes (from chloroform); mp 218.5-219.5 ${ }^{\circ} \mathrm{C}$; IR (KBr) $3196(\mathrm{OH}), 1689.5$ $(\mathrm{C}=\mathrm{O}, \mathrm{N}-\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(2 \mathrm{H}, \mathrm{d}, J=8.1$ Hz , arom H), $7.40(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}$, arom H$), 7.31-7.26(3 \mathrm{H}, \mathrm{m}$, arom H), $7.14(2 \mathrm{H}, J=8.2 \mathrm{~Hz}$, arom H), $7.12(2 \mathrm{H}, \mathrm{m}$, arom H), 7.07 $(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}$, arom H$), 5.45\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}\right.$; exchanged by $\left.\mathrm{D}_{2} \mathrm{O}\right)$, $4.26(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 3.55\left(1 \mathrm{H}, \mathrm{d}, J=13.4 \mathrm{~Hz}, \mathrm{HC}-\mathrm{H}_{\mathrm{a}}-4\right), 3.32(1 \mathrm{H}, \mathrm{d}, J$ $\left.=13.4 \mathrm{~Hz}, \mathrm{HC}-\mathrm{H}_{\mathrm{b}}-4\right), 2.53(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-7), 2.40(1 \mathrm{H}, \mathrm{sep}, J=6.7 \mathrm{~Hz}$, $\mathrm{H}-10), 2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.26(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.71(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}$, $\mathrm{Me}-12), 0.00(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{Me}-11) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 212.9$ (C-9), 170.4 (C-8), 143.2, 143.0, 137.0, 136.7, 134.7 (arom C), 129.2 (2C), 128.9 (3C), 128.8 (2C), 128.7 (2C), 125.6 (2C), 125.0 (2C) (arom CH), 106.4 (C-1), 88.9 (C-3), 67.8 (C-6), 66.1 (C-5), 47.5 (C-4), 39.7 (C-10), 28.7 (Me-7), 21.0 (Me), 20.9 (Me), 20.1 (Me-12), 17.2 (Me-11); FAB HRMS (acetone/NBA): calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{NO}_{4}$ $484.2488(\mathrm{M}+\mathrm{H})$; found 484.2501. Anal Calcd for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{NO}_{4} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 76.28 ; \mathrm{H}, 6.92$; N, 2.87. Found: C, 76.55; H, 7.03; N, 2.84.
16. The structure of 3ac was determined by spectroscopic methods, a 2D NMR study and elemental analysis.
1-Ethylide-3,3-bis(4-methylphenyl)-7-methyl-6-phenyl-2-oxa-7-azaspiro[4.4]nonane-8,9-dione (3ac): colorless needles (from chloroform/hexane); mp 182-183 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) v 1767(\mathrm{C}=\mathrm{O}), 1715$ $(\mathrm{N}-\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}$, ArH), $7.27(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}), 7.21(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH})$, $7.18(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{ArH}), 7.06(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 6.32(2 \mathrm{H}$, br. s, ArH), $4.40(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 3.37(1 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}, \mathrm{H}-10), 3.32$ $\left(1 \mathrm{H}, \mathrm{d}, J=12.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-4\right), 2.92\left(1 \mathrm{H}, \mathrm{d}, J=12.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-4\right), 2.90(3 \mathrm{H}$, s, N-Me), $2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.27(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.44(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}$, $\mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.5$ (C-9), $160.0(\mathrm{C}-8), 150.0$ (C-1), 142.2, 140.8, 137.6, 137.1, 135.0 (arom C), 129.3 (2C), 128.9 (2C), 128.6, 128.3 (2C), 126.0 (2C), 125.2 (4 C) (arom CH), 100.1 (C10), 87.9 (C-3), 70.1 (C-6), 60.9 (C-5), 53.0 (C-4), 30.9 (N-Me), 21.1, 20.9 (Me), 10.7 (Me); FAB HRMS (acetone/NBA): calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{NO}_{3} 452.2226(\mathrm{M}+\mathrm{H})$; found 452.2225. Anal Calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{NO}_{3} \cdot 4 / 5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 77.33 ; \mathrm{H}, 6.62$; N, 3.01. Found: C, $77.08 ; \mathrm{H}$, 6.37; N, 2.98.
17. The structure of $\mathbf{3 a d}$ was determined by spectroscopic methods, a 2D NMR study and elemental analysis.
3,3-Bis(4-methylphenyl)-7-methyl-6-phenyl-1-propylidene-2-oxa-7-azaspiro[4.4]nonane-8,9-dione (3ad): colorless needles (from chloroform/hexane); mp 188-189 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) v 1767(\mathrm{C}=\mathrm{O}), 1717$ $(\mathrm{N}-\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}$, $\mathrm{ArH}), 7.27(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}), 7.21(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{ArH})$, $7.17(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.05(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{ArH}), 6.31(2 \mathrm{H}$, br. s, ArH), $4.42(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 3.37(1 \mathrm{H}, \mathrm{dd}, J=6.7,6.3 \mathrm{~Hz}, \mathrm{H}-10)$, $3.35\left(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-4\right), 2.90\left(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-4\right), 2.90$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}), 2.43(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.26(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.07(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $\mathrm{CH}), 1.86(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}-\mathrm{H}), 0.55(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.5$ (C-9), $160.0(\mathrm{C}-8), 149.1$ (C-1), 142.2, $140.8,137.5,137.0,134.9$ (arom C), 129.3 (2C), 128.9 (2C), 128.5, 128.3 (2C), $126.0(2 \mathrm{C}), 125.1$ (4C) (arom CH), 107.5 (C-10), 87.9 (C3), 70.1 (C-6), 60.1 (C-5), 52.8 (C-4), 30.8 (N-Me), 21.1, 20.8 (Me), $18.7\left(\mathrm{CH}_{2}\right), 13.7(\mathrm{Me})$; FAB HRMS (acetone/NBA): calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{NO}_{3} 466.2382(\mathrm{M}+\mathrm{H})$; found 466.2377 .
18. The structure of $\mathbf{3 a e}$ was determined by spectroscopic methods, a 2D NMR study and elemental analysis.
3,3-Bis(4-methylphenyl)-7-methyl-6-phenyl-1-(propan-2-ylidene)-2-oxa-7-azaspiro[4.4]nonane-8,9-dione (3ae): colorless microcrystals (from chloroform/hexane); mp 174-175 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right)$ $v 1765(\mathrm{C}=\mathrm{O}), 1717(\mathrm{~N}-\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53$ $(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.27(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 7.21(2 \mathrm{H}, \mathrm{m}$, ArH), $7.19(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.15(1 \mathrm{H}, \mathrm{t}, J=8.03 \mathrm{~Hz}, \mathrm{ArH})$, $7.05(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{ArH}), 6.50(2 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{ArH}), 4.55(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 6), $3.42\left(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-4\right), 3.00(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}), 2.89(1 \mathrm{H}, \mathrm{d}$, $\left.J=12.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-4\right), 2.39(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.26(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.58(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}-12), 0.67(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-11) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.4$ (C-9), 160.0 (C-8), 143.9 (C-1), 143.7, 141.2, 137.6, 136.8, 135.0 (arom C), 129.3 (2C), 128.9 (4C), 128.3, 127.8 (2C), 126.1 (2C), $125.0(2 \mathrm{C})(\operatorname{arom~CH}), 107.0(\mathrm{C}-10), 86.8(\mathrm{C}-3), 69.5(\mathrm{C}-6), 60.2(\mathrm{C}-$ 5), 54.7 (C-4), 31.2 (N-Me), 21.0, 20.9 (Me), 20.5 (Me-11), 17.5 (Me12); Anal Calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{NO}_{3}$: C, $79.97 ; \mathrm{H}, 6.71 ; \mathrm{N}, 3.01$. Found: C, 79.73; H, 6.78; N, 3.07.
19. X-ray crystal data of 3ae (Fig. 4): Empirical Formula $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{NO}_{3}$; Formula Weight 465.59; Crystal Color, Habit colorless, block; Crystal Dimensions $0.370 \times 0.327 \times 0.187 \mathrm{~mm}$; Crystal System triclinic; Lattice Type Primitive; Lattice Parameters $a=9.6559$ (4) $\AA, b=$
9.9138(5) $\AA, c=14.9614(8) \AA, \alpha=75.345(2)^{\circ}, \beta=69.807(2)^{\circ}, \gamma=$ $78.722(1)^{\circ}, V=1291.2(1) \AA^{3}$; Space Group $P-1$ (\#2); Z value $2 ; D_{\text {calc }}$ $1.197 \mathrm{~g} / \mathrm{cm}^{3} ; F_{000} 496.00 ; \mu(\mathrm{MoK} \alpha) 0.763 \mathrm{~cm}^{-1} ; R_{1}(I>2.00 \sigma(\mathrm{I}))$ $0.0688 ; R$ (All reflections) 0.1444 ; $\mathrm{w} R_{2}$ (All reflections) 0.2614 ; Goodness of Fit Indicator 1.131.

Fig. 4. Crystal structure of 3ae
20. Snider, B. B. Tetrahedron 2009, 65, 10738-10744.
21. Cossy, J.; Bouzide, A.; Leblanc, C. J. Org. Chem. 2000, 65, 7258-7265.

Graphic abstract

$R^{1}, R^{2}=$ alkyl and/or $H ; R^{3}=H, P h ; R^{4}=B n, M e$

[^0]: * Corresponding author. Tel.: +81-96-342-3374; fax: +81-96-342-3374; e-mail: nishino@sci.kumamoto-u.ac.jp
 \dagger Dedicated to Dr. Kazu Kurosawa, Professor Emeritus of Kumamoto University, on his 80th birthday

[^1]: ${ }^{\text {a }}$ The reaction of ethene $\mathbf{1}(1 \mathrm{mmol})$ was carried out in acetic acid $(15 \mathrm{~mL})$.
 ${ }^{\mathrm{b}}$ Molar ratio.
 ${ }^{\mathrm{c}}$ Isolated yield based on the ethene $\mathbf{1}$.
 ${ }^{\text {d }} 1$-Hydroxy-1-isopropyl-3,3-bis(4-methylphenyl)-7-methyl-6-phenyl-2-oxa-7-azaspiro[4.4]nonane-8,9-dione (4) was also isolated in 22% yield.

