Mn(III)-Based Oxidative Cyclization of Alkenes Using Tricarbonyl System

Thanh-Truc Huynh, ${ }^{[a]}$ Hiroyasu Yamakawa, ${ }^{[a]}$ Van-Ha Nguyen ${ }^{[b]}$ and Hiroshi Nishino* ${ }^{[c]}$

Abstract

The Mn (III)-based oxidation of 1,1-disubstituted ethenes with 2-(2-aryl-2-oxoethyl)malonates, 2-acetyl-4-aryl-4-oxobutanoates, and 3-acetyl-1-arylpentane-1,4-diones was evaluated. The reaction using the malonates mainly gave the 2,3-dihydro-4H-pyran-4,4dicarboxylates along with γ-lactones. A similar reaction using the acetyloxobutanoates and acetylpentanediones produced the 2,3,3a,6a-tetrahydrofuro[2,3-b]furans and the corresponding dihydropyrans. The cyclization was strongly affected by the nucleophilicity of the carbonyl oxygen in the carbocation intermediate, and the kinetic and thermodynamic controls of the following reaction. The structure determination and the mechanisms are discussed.

Introduction

Cyclization using the carbonyl double bond is one of the most important techniques to prepare oxygen heterocycles. ${ }^{[1]}$ The oxidation of 1,3-dicarbonyl compounds with transition metal oxidants, such as $\mathrm{Mn}, \mathrm{Ce}, \mathrm{Co}, \mathrm{TI}, \mathrm{Hg}, \mathrm{Cu}, \mathrm{Ru}, \mathrm{Pb}, \mathrm{Ni}, \mathrm{Ag}, \mathrm{VO}$, etc., is able to generate carbon radicals at the α position to the carbonyl group, ${ }^{[2]}$ and if an electron-rich alkene is present in the reaction system, the carbon radicals immediately attack the $C-C$ double bond, followed by O-cyclization to produce the oxygen heterocycles, such as furans and lactones. ${ }^{[3]}$ Manganese(III) acetate, $\mathrm{Mn}(\mathrm{OAc})_{3}$, is the best oxidant to produce 1,3-dicarbonyl radicals via the Mn (III)-enolate complex, which are allowed to react with alkenes and aromatics, producing many types of heterocyclic compounds. ${ }^{[4,5]}$ 1,3-Dicarbonyl compounds bearing another carbonyl functionality between the 1,3-dicarbonyl group, such as A in Scheme 1, are similarly oxidized with $\mathrm{Mn}(\mathrm{OAc})_{3}$ and the corresponding radicals C are produced via the Mn (III)-enolate complex B. Radical C, for example, adds to 1,1-disubstututed alkenes to give tertiary carbon radicals D. Radicals D are easily oxidized under the stated conditions to produce cations E, which next compete for cyclization at the three carbonyl oxygens (paths a, b, and c in Scheme 1). ${ }^{[6,7]}$ At this time, the cyclization is

[^0]controlled by the kinetics and thermodynamics, and also the nucleophilicity of the carbonyl oxygen. We previously reported the reactions using tricarbonyl substrates, giving dihydro- $2 H$-pyrans, dihydrofuro[2,3-b]furans, ${ }^{[7]}$ azadioxa[4.3.3]-, azadioxa[5.3.3]-, azadioxa[6.3.3]-, ${ }^{[8]}$ and azatrioxa[4.4.3]-propellanes. ${ }^{[9]}$ In this paper, we concentrated on the reaction using the 3-acetyl-1-arylalkane-1,4-dione derivatives and examined the difference in the reactivity for the nucleophilicity of the carbonyl oxygen. As a result, the keto carbonyl oxygen was the best for the cyclization and 2,3,3a,6a-tetrahydrofuro[2,3-b]furans were mainly produced via a tandem cyclization, while the reaction using 2-(2-aryl-2oxoethyl)malonates gave the dihydro-2H-pyrans. We describe the reactions in detail.

Scheme 1. Cyclization mode in the Mn(III)-based reaction of 2-alkanoyl-4-aryl-4-oxobutanoates.

Results and Discussion

Reaction using 2-(2-aryl-2-oxoethyl)malonates 2a-g. ${ }^{[7]}$ 1,1Disubstituted ethenes $\mathbf{1 a - g}$ were prepared by the Grignard reaction of the corresponding acetopheneones with arylmagnesium bromide or methylmagnesium iodide followed by dehydration. The malonates $\mathbf{2 a - g}$ containing one keto-carbonyl and two ester carbonyl groups were prepared by the reaction of malonates with α-bromoacetophenone derivatives in the presence of a base in alcohol. ${ }^{[10]}$ With the reactants in hand, the oxidation of a mixture of $1 a\left(R^{1}=R^{2}=P h\right)$ and $2 a\left(R^{3}=R^{4}=\right.$ OMe, $\mathrm{Ar}=\mathrm{Ph}$) with $\mathrm{Mn}(\mathrm{OAc})_{3}$ was carried out at an almost stoichiometric amount (Table 1, Entry 1). To our delight, two cyclization compounds were produced in low yields, one was the dihydropyran 3aa and the other was the lactone 4aa (eq. 1 in Scheme 2). Products 3aa and 4aa were easily characterized by NMR spectroscopy (See Experimental Section and Supporting Information). For example, two singlets assigned to the H-5 sp ${ }^{2}$

Scheme 2. Mn(III)-based reaction of alkenes 1a-f with 2-carbonylalkane-1,4-diones 2a-r.

Table 1. Reaction of alkenes $\mathbf{1 a - f}$ with malonates $\mathbf{2 a}-\mathbf{g}$ in the presence of manganese(III) acetate ${ }^{[\mathrm{ab}]}$

Entry	Alkene 1	Malonate 2	1:2:Mn(OAc)3 ${ }^{[b]}$	Time/min	Product (yield/\%) ${ }^{[\text {[] }}$	
1	1a: $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ph}$	2a: $\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{OMe}, \mathrm{Ar}=\mathrm{Ph}$	1:1.2:2.2	7	3aa (37)	4aa (5)
2	1 a	2a	1:2:3	15	3aa (79)	4aa (10)
3	1b: $\mathrm{R}^{1}=\mathrm{R}^{2}=4-\mathrm{Cl}_{-} \mathrm{C}_{6} \mathrm{H}_{4}$	2a	1:2:3	14	3ba (73)	4ba (15)
4	1c: $\mathrm{R}^{1}=\mathrm{R}^{2}=4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}$	2a	1:2:3	14	3ca (74)	
5	1d: $\mathrm{R}^{1}=\mathrm{R}^{2}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$		1:2:3	11	3da (64)	4da (9)
6	1e: $\mathrm{R}^{1}=\mathrm{R}^{2}=4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}$	2a	1:2:3	11	Complex mixture	
7	1f: $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}$	2a	1:2:3	11	3fa (37)	4fa (38)
8	1 a	2b: $\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{OMe}, \mathrm{Ar}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	1:2:3	8	3 ab (71)	
9	1a	2c: $\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{OMe}, \mathrm{Ar}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$	1:2:3	7	3ac (74)	4ac (13)
10	1a	2d: $\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{OMe}, \mathrm{Ar}=4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}$	1:2:3	7	3ad (23)	
11	1 a	2e: $\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{OEt}, \mathrm{Ar}=\mathrm{Ph}$	1:2:3	6	3ae (61)	
12	1a	2f: $\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{OEt}, \mathrm{Ar}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	1:2:3	6	3af (57)	
13	1a	2g: $\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{OMe}, \mathrm{Ar}=2-\mathrm{Naph}$	1:2:3	5	3ag (51)	4ag (9)

[^1]and H-3 methylene protons appeared at $\delta 5.64(1 \mathrm{H})$ and $3.44(2 \mathrm{H})$, respectively, in the ${ }^{1} \mathrm{H}$ NMR spectrum of 3aa, and the ${ }^{13} \mathrm{C}$ NMR spectrum showed two characteristic peaks due to the sp^{2} enolate carbons at C-5 (δ 95.1) and C-6 ($\delta 151.5$) and a quaternary carbon ($\delta 81.4$) assigned to the $\mathrm{C}-2 \mathrm{sp}^{3}$ carbon attached to the oxygen. While the minor product 4aa was certainly the γ-lactone based on the IR spectrum ($v_{\mathrm{C}=0} 1778 \mathrm{~cm}^{-1}$) and the ${ }^{1} \mathrm{H}$ NMR spectrum showed two sets of $A B$ gemimal couplings, at $\delta 3.87$ $\left(\mathrm{H}_{\mathrm{a}}-\mathrm{CH}\right)$ and $3.26\left(\mathrm{HC}-\mathrm{H}_{\mathrm{b}}\right)\left(\mathrm{J}_{\mathrm{ab}}=18.0 \mathrm{~Hz}\right)$, and at $\delta 3.85\left(\mathrm{H}_{\mathrm{c}}-\mathrm{CH}\right)$ and $3.31\left(\mathrm{HC}-\mathrm{H}_{\mathrm{d}}\right)\left(J_{c d}=15.0 \mathrm{~Hz}\right)$. These NMR data supported the fact that the oxidative cyclization undoubtedly occurred and the major dihydropyran and minor γ-lactone skeleton must have been constructed. The reaction was then optimized and the best yield of 3aa was achieved in 79\% along with 4aa (10\%) (Entry 2). The use of 4-chlorophenyl- $\mathbf{1 b}$ and 4-fluorophenyl-substituted ethenes 1c gave a similar result (Entries 3 and 4), but the bis(4methylphenyl)ethene (1d) and 2-phenylpropene (1f) led to an inferior yield (Entries 5 and 7). The reaction of the alkene $1 e\left(R^{1}\right.$ $=R^{2}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$) substituted by a strong electron-donating group became complicated and no products were isolated (Entry 6). On the other hand, although the electronic effect of the 2arylethyl group in 2b $\left(\mathrm{Ar}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ and $\mathbf{2 c}\left(\mathrm{Ar}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ was not observed during the cyclization (Entries 8 and 9), the use of 2 d bearing the $4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$ group that produced the low yield of $\mathbf{3 a d}$ and steric effect of $\mathbf{2 g}$ having the (2-naphthyl)ethyl group was remarkable (Entries 10 and 13). In addition, the reaction using the diethyl malonates $\mathbf{2 e}$ and $\mathbf{2 f}$ gave a slightly inferior result (Entries 11 and 12).

Reaction using 2-acetyl-4-aryl-4-oxobutanoates $\mathbf{2 h}$-I. In order to explore the reaction using a compound including two ketocarbonyl and one ester carbonyl groups instead of the oxoethylmalonates 2a-e, 2-acetyl-4-aryl-4-oxobutanoates 2h-I were prepared by the reaction of the 3-oxobutanoates with the corresponding α-bromoacetophenones in the presence of NaOEt in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. With the oxobutanoates $\mathbf{2 h}(84 \%), \mathbf{2 i}(78 \%), \mathbf{2 j}$
(71\%), 2k (82\%), and $\mathbf{2 l}$ (54\%), respectively, in hand, the reaction of alkene 1a with $2 \mathrm{~h}\left(\mathrm{R}^{3}=\mathrm{OEt}, \mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=\mathrm{Ph}\right)$ was first evaluated (eq. 2 in Scheme 2 and Table 2, Entries 1-4). As a result, bicyclic compound 5ah and dihydropyran $\mathbf{6} \mathbf{a h}$ were produced in moderate yields. The best yield was achieved under reflux temperature using a stoichiometric amount of $\mathrm{Mn}(\mathrm{OAc})_{3}$ (Entry 3). The IR spectrum of 5ah showed strong absorption bands at 1722 cm^{-1} and $1250 \mathrm{~cm}^{-1}$ assigned to the ester group, and a singlet of an sp^{2} proton assigned to $\mathrm{H}-4(\delta 4.90)$ and an AB quartet due to $\mathrm{H}-3$ methylene proton ($\delta 3.32$ and $3.23, J=13.1 \mathrm{~Hz}$) appeared in the ${ }^{1} \mathrm{H}$ NMR spectrum (See Experimental Section and Supporting Information). In addition, a diastereotopic methylene signal (δ 4.21) of the ethoxy group was also observed. In the ${ }^{13} \mathrm{C}$ NMR spectrum of 5 ah , three characteristic sp^{3} quaternary carbons appeared, three of which were assigned to the C-6a ring junction ($\delta 118.5$) attached to two oxygens, C-2 ($\delta 89.6$) connected to an oxygen and two phenyl groups, and a C-3a ring junction ($\delta 67.3$) joined to an ester carbonyl and an alkenic sp^{2} carbon. Therefore, the product $5 a h$ consisted of a bicyclic structure and was determined to be ethyl 6a-methyl-2,2,5-triphenyl-2,3-dihydrofuro[2,3-b]furan-3a(6aH)-carboxylate. The stereochemistry should be a cis-fused bicyclic compound (vide infra for an X-ray single crystal structure of 7 bm). Although the ${ }^{1} \mathrm{H}$ NMR spectrum of 6ah was similar to that of the dihydropyran 3aa, the methylene protons of $\mathrm{H}-3$ and ethoxy group appeared as an $A B$ quartet and a diastereotopic multiplet, respectively, due to the existence of an asymmetric carbon at C-4 in 6ah.
With the exact structure of the product in hand, we next examined the reaction using various combinations of alkenes $\mathbf{1 b}-\mathbf{e}$ and 2 -acetyl-4-aryl-4-oxobutanoates $\mathbf{2 h}$-I. However, the product distribution was similar to that using 1a and $\mathbf{2 h}$ (Table 2, Entries 5-16). In any event, a tandem cyclization predominantly occurred using two keto-carbonyl groups of the 2-acetyl-4-aryl-4oxobutanoates $\mathbf{2 h}$-I, but no γ-lactonization at the ester carbonyl group occurred.

Table 2. Reaction of alkenes $\mathbf{1 a - e}$ with 4 -oxobutboates $\mathbf{2 h}-\mathrm{I}$ in the presence of manganese(III) acetate ${ }^{[\mathrm{a}]}$

Entry	Alkene 1	Oxobutanoate 2	1:2:Mn(OAc) $3^{[b]}$	Time/min	Product (yield/\%) ${ }^{[c]}$	
1	1a: $R^{1}=R^{2}=P h$	2h: $\mathrm{R}^{3}=\mathrm{OEt}, \mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=\mathrm{Ph}$	1:1.2:2	$7{ }^{\text {[d] }}$	5ah (42)	6ah (23)
2	1a: $R^{1}=R^{2}=P h$	2h: $\mathrm{R}^{3}=\mathrm{OEt}, \mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=\mathrm{Ph}$	1:1.2:2	$1{ }^{\text {[}]}$	5ah (47)	6ah (28)
3	1a: $R^{1}=R^{2}=P h$	2h: $\mathrm{R}^{3}=\mathrm{OEt}, \mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=\mathrm{Ph}$	1:1.2:2	1	5ah (49)	6ah (29)
4	1a: $R^{1}=R^{2}=P h$	2h: $\mathrm{R}^{3}=\mathrm{OEt}, \mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=\mathrm{Ph}$	1:1.2:4	7	5ah (30)	6ah (20)
5	1b: $\mathrm{R}^{1}=\mathrm{R}^{2}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	2h: $\mathrm{R}^{3}=\mathrm{OEt}, \mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=\mathrm{Ph}$	1:1.2:2.1	1	5bh (55)	6bh (33)
6	1c: $\mathrm{R}^{1}=\mathrm{R}^{2}=4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}$	2h: $\mathrm{R}^{3}=\mathrm{OEt}, \mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=\mathrm{Ph}$	1:1.2:2.2	1	5ch (54)	6ch (24)
7	1d: $\mathrm{R}^{1}=\mathrm{R}^{2}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$	2h: $\mathrm{R}^{3}=\mathrm{OEt}, \mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=\mathrm{Ph}$	1:1.2:2.1	1	5dh (68)	6dh (27)
8	1e: $\mathrm{R}^{1}=\mathrm{R}^{2}=4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}$	2h: $\mathrm{R}^{3}=\mathrm{OEt}, \mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=\mathrm{Ph}$	1:1.2.2	1	5eh (58)	6eh (15)
9	1a: $R^{1}=R^{2}=P h$	2i: $\mathrm{R}^{3}=\mathrm{OEt}, \mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	1:1.2:2.1	1	5ai (54)	6ai (25)
10	1a: $R^{1}=R^{2}=P h$	2j: $\mathrm{R}^{3}=\mathrm{OEt}, \mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}$	1:1.2.2	1	5aj (51)	6aj (28)
11	1a: $R^{1}=R^{2}=P h$	2k: $\mathrm{R}^{3}=\mathrm{OEt}, \mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$	1:1.2.2	1	5ak (41)	6ak (34)
12	1a: $R^{1}=R^{2}=P h$	2l: $\mathrm{R}^{3}=\mathrm{OEt}, \mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=2-\mathrm{Naph}$	1:1.2:2.1	1	5al (31)	6al (25)
13	1b: $\mathrm{R}^{1}=\mathrm{R}^{2}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	2i: $\mathrm{R}^{3}=\mathrm{OEt}, \mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	1:1.2:2.1	1	5bi (51)	6bi (31)
14	1b: $\mathrm{R}^{1}=\mathrm{R}^{2}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	2k: $\mathrm{R}^{3}=\mathrm{OEt}, \mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$	1:1.2:2.1	1	5bk (43)	6bk (32)
15	1d: $\mathrm{R}^{1}=\mathrm{R}^{2}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$	2i: $\mathrm{R}^{3}=\mathrm{OEt}, \mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	1:1.2:2.1	1	5di (60)	6di (26)
16	1d: $\mathrm{R}^{1}=\mathrm{R}^{2}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$	2k: $\mathrm{R}^{3}=\mathrm{OEt}, \mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$	1:1.2:2.1	1	5dk (57)	6dk (22)

[^2]Table 3. Reaction of alkenes 1a-f with pentane-1,4-diones $\mathbf{2 m}$-r in the presence of manganese(III) acetate ${ }^{[a]}$

Entry	Alkene 1	Pentanedione 2	1:2:Mn(OAc) $3^{[b]}$	Time/min	Product (yield/\%) ${ }^{[\text {c] }}$		
1	1a: $\mathrm{R}^{1}=\mathrm{R}^{2}=P h$	2m: $\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=\mathrm{Ph}$	1:2:3	$5^{[d]}$	7am (62)	8am (19)	
2	1a: $R^{1}=R^{2}=P h$	2m: $\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=\mathrm{Ph}$	1:2:3	$3^{[e]}$	7am (64)	8 am (20)	
3	1a: $R^{1}=R^{2}=P h$	2m: $\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=\mathrm{Ph}$	1:2:3	1	7am (67)	8am (22)	
4	1b: $\mathrm{R}^{1}=\mathrm{R}^{2}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	2m: $\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=\mathrm{Ph}$	1:2:3	1	7bm (82)	8bm (9)	9 (7)
$5{ }^{\text {[f] }}$	1b: $\mathrm{R}^{1}=\mathrm{R}^{2}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	2m: $\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=\mathrm{Ph}$	1:2:3	7	7bm (77)		9 (15)
6	1c: $\mathrm{R}^{1}=\mathrm{R}^{2}=4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}$	2m: $\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=\mathrm{Ph}$	1:2:3	1	$7 \mathrm{~cm}(52)$	8 cm (14)	
7	1d: $\mathrm{R}^{1}=\mathrm{R}^{2}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$	2m: $\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=\mathrm{Ph}$	1:2:3	1	7dm (76)		
8	1e $\mathrm{R}^{1}=\mathrm{R}^{2}=4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}$	2m: $\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=\mathrm{Ph}$	1: 2: 3	1	7em (78)		
9	1f: $\mathrm{R}^{1}=P h, \mathrm{R}^{2}=\mathrm{Me}$	2m: $\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=\mathrm{Ph}$	1: 2: 3	1	7 fm (53)		
10	1a: $R^{1}=R^{2}=P h$	2n: $\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	1: 2: 3	1	7an (66)	8an (19)	
11	1a: $R^{1}=R^{2}=P h$	20: $\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}$	1: 2: 3	1	7 ao (61)	8 ao (14)	
12	1a: $R^{1}=R^{2}=P h$	2p: $\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$	1: 2: 3		7ap (61)	8ap (24)	
13	1a: $R^{1}=R^{2}=P h$	2q: $\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ar}=4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}$	1: 2: 3	1	7 aq (39)	8aq (36)	
14	1a: $\mathrm{R}^{1}=\mathrm{R}^{2}=P h$	2r: $R^{3}=R^{4}=\mathrm{Me}, \mathrm{Ar}=2-\mathrm{Naph}$	1: 2: 3	1	7ar (54)	8ar (18)	

[a] The reaction of alkene $1(1 \mathrm{mmol})$ was carried out in $\mathrm{AcOH}(15 \mathrm{~mL})$ at reflux temperature. [b] Molar ratio. [c] Isolated yield based on the amount of
the alkene 1 used. [d] The reaction was carried out at $70^{\circ} \mathrm{C}$. [e] The reaction was performed at $100^{\circ} \mathrm{C}$. [f] The reaction was conducted at room temperature in an $\mathrm{AcOH}(6 \mathrm{~mL})$ and $\mathrm{HCO}_{2} \mathrm{H}(2 \mathrm{~mL})$ mixed solvent.

Reaction using 3-acetyl-1-arylpentane-1,4-diones 2m-r. In order to investigate the reaction with the triketones instead of the oxoethylmalonates 2a-f and 2-acetyl-4-aryl-4-oxobutanoates $\mathbf{2 h}$ I, 3-acetyl-1-arylpentane-1,4-diones 2 m -r were prepared by the reaction of 2,4-pentanedione with α-bromoacetophenones similar to that already mentioned. With the triketones $\mathbf{2 m}-\mathrm{r}$ in hand, the reaction of 1a with triketone $2 m\left(R^{3}=R^{4}=M e, A r=P h\right)$ was evaluated in AcOH at $70{ }^{\circ} \mathrm{C}$ (eq. 3 in Scheme 2). After the workup, two cyclization products 7 am and 8am similar to those in the reaction of $\mathbf{1 a}$ with $\mathbf{2 h}$ were obtained (Table 3, Entry 1). When the reaction was carried out at reflux temperature, the reaction times shortened and the yields somewhat increased (Entry 3). The ${ }^{1} \mathrm{H}$ NMR spectrum of 7 am was similar to that of the bicyclic compound 5ah, but the $\mathrm{H}-3$ methylene protons appeared at $\delta 3.38$ and $3.00(J=13.1 \mathrm{~Hz})$ as an AX pattern $(\Delta \delta 0.38)$. The ${ }^{13} \mathrm{C}$ chemical shifts of $7 \mathrm{am}(\delta 118.0$ and 72.4) derived from the ring junction were quite similar to those of 5 ah . Therefore, the cyclization product of 7 am was undoubtedly 3a-acetyl-6a-methyl-2,2,5-triphenyl-2,3,3a,6a-tetrahydrofuro[2,3-b]furan. Surprisingly, in the ${ }^{1} \mathrm{H}$ NMR spectrum of the minor product 8am, only one acetyl group existed. In addition, a complex signal assigned to the methine proton appeared at $\delta 3.13$ (ddd, $J=11.5,5.8$, and 2.5 $\mathrm{Hz})$, and the sp^{2} proton due to $\mathrm{H}-5$ showed at $\delta 5.47$ with vicinal $(J=2.5 \mathrm{~Hz})$ and long-range couplings $(J=1.5 \mathrm{~Hz})$. The methylene protons due to $\mathrm{H}-3$ also appeared at $\delta 3.00$ (ddd, $J=13.6,5.8$, 1.5 Hz) and $\delta 2.50(\mathrm{dd}, J=13.6,11.5 \mathrm{~Hz}$) with germinal, vicinal, and long-range couplings. Accordingly, the minor product 8am should be 4-acetyl-2,2,6-triphenyl-3,4-dihydro-2H-pyran. Probably, one acetyl group of the desired dihydropyran was lost during the reaction. With a similar result of the reaction using 2-acetyl-4-phenyl-4-oxobutanoate 2 h in hand, we next examined the reaction of 1,1-bis(4-chlorophenyl)ethene (1b) with 2 m (Entry $4)$, which gave the bicyclic product 7 bm (82% yield) along with the monoacetyl- 8bm (9% yield) and the desired diacetyldihydropyran 9 (7% yield). Since we recently reported the efficient Mn (III)-based oxidative cyclization using an AcOH and $\mathrm{HCO}_{2} \mathrm{H}$ mixed solvent, ${ }^{[5]]}$ the reaction was subjected to similar conditions at room temperature. As a result, the bicyclic product 7 bm (77%) and the desired dihydropyran 9 (15\% yield) were produced (Entry
5). Pleasingly, we obtained the X-ray single crystal structure of the cis-fused bicyclic product 7bm (See Experimental Section and Supporting Information). ${ }^{[7]}$

Reaction pathway. In the above reactions, the use of malonates 2a-g needed a longer reaction time than that of the 4oxobutanoates $\mathbf{2 h}-\mathrm{I}$ and pentane-1,4-diones $2 \mathrm{~m}-\mathrm{r}$. This is attributed to the formation of the Mn (III)-enolate complex A which would be the rate-determining step (upper in Scheme 3). ${ }^{[6 a]}$ That is, the formation of A should be the fastest in the reaction with the triketones $\mathbf{2 m} \mathbf{- r}$ and slowest in that with the malonate esters $\mathbf{2 a}$ g. Once complex A was formed, the tertiary radical B was produced via a single-electron transfer (SET) oxidation and attacked the electron-rich 1,1-disubstituted ethenes 1a-f to give the corresponding tertiary radical C which should be easily oxidized by Mn (III) species in situ to finally produce the carbocation intermediate D.
The rule for ring closure during the cyclization is generally accepted. ${ }^{[11]}$ Normally, the 6-endo-trig cyclization is thermodynamically favored over that of the 5-endo-trig though the steric and electronic effects and also the existence of heteroatoms in the backbone must be considered. For the reaction with the malonates $\mathbf{2 a - g}$, the 6 -endo-trig cyclization was favored and the dihydropyrans 3 were preferentially produced (Table 1). In some cases, the minor γ-lacones 4 were not obtained (Table 1, Entries $4,8,10-12$). Although the 5 -endo-trig mode might be kinetically faster that the 6-endo and the oxonium ion E would be somewhat stabilized by resonance (Scheme 3 (1) path b), the nucleophilicity of the keto-carbonyl oxygen is stronger than that of the ester carbonyl, so that the equilibrium shifted to path a (Scheme 3 (1) path a). The reactivity of the keto and ester carbonyls during the cyclization of D was $8: 1$ for the reaction of 1 a with $\mathbf{2 a}$ (Table 1 , Entry 2). On the other hand, the 5-endo-trig mode at the ketocarbonyl was favorable for the reaction using 4-oxobutanoates $\mathbf{2 h}-$ because of the kinetic control ${ }^{[11]}$ and the successive tandem cyclization which produced the more rigid bicyclic framework 5 (Table 2 and Scheme 3 (2) path c). In addition, it is clear that the cyclization depended on the nucleophilicity of the keto and ester carbonyl oxygens from the result that no γ-lactones were
produced during the reaction using the 4 -oxobutanoates 2 h -I (Scheme 3 (2) path e). The reactivity of the 5 -endo-trig tandem cyclization and 6-endo-trig mode at the keto carbonyls was 5:3 for the reaction of 1a with $\mathbf{2 h}$ (Table 2, Entry 3). Finally, the kinetically controlled 5 -endo-trig tandem cyclization preferentially occurred for the reaction using the pentane-1,4-diones $\mathbf{2 m}$-r (Table 3 and

Scheme 3 (3) path f). In some cases, only the bicyclic compounds 7 were produced (Table 3, Entries 7-9). The reactivity of the 5 -endo-trig tandem cyclization and 6 -endo-trig mode at the keto carbonyls was $3: 1$ for the reaction of $\mathbf{1 a}$ with $\mathbf{2 m}$ (Table 3, Entry $3)$.

(1) 2a-g: $R^{3}=R^{4}=O R(R=M e$ or $E t)$

Scheme 3. Mechanism for the formation of the products 3-8.

Conclusions

It was concluded that the 6-endo-trig cyclization was favored for the carbocation intermediate D in Scheme 3, mainly giving dihydropyrans 3 when the malonates 2a-g were used for the reaction. However, the kinetically controlled tandem cyclization preferred in D in the reaction using the pentane-1,4-diones $2 \mathrm{~m}-\mathbf{r}$ produced the bicyclic compounds 7 . On the other hand, the use of the 4 -oxobutanoates $\mathbf{2 h}$-I led to the result that the kinetically controlled 5 -endo tandem cyclization somewhat preferred the thermodynamically controlled 6-endo mode in D , affording the bicyclic compounds 5 and the dihydropyrans 6 . It was found that the cyclization was strongly affected by the nucleophilicity of the carbonyl oxygen of the carbocation D, and the kinetic and thermodynamic controls of the following reaction. As a result, the relative feasibility of the 5-endo-trig tandem cyclization, 6-endotrig cyclization, and 5-endo-trig lactonization in the carbocation intermediate D was estimated as 24-13:8:1 for the reaction of 1 a with the triketone $\mathbf{2 m}$, the diketo-monoester $\mathbf{2 h}$, and the ketodiester 2a, when both the electronic effects of the methyl in the acetyl group and the phenyl in the benzoyl group were ignored.

Supporting Information Summary

Experimental Section (Measurements, Materials, Full reaction procedures, and spectroscopic data of all the products 3-9), crystal structure of 7 bm (Fig. 1), ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral charts of all the products 3-9, and X-ray Structure Report of 7bm are available in Supporting Informatiom.

Acknowledgements

This research was supported by a Grant-in-Aid for Scientific Research (C), No. 18K05109, 25410049, 22550041, and 19550046 from the Japan Society for the Promotion of Science. We also acknowledge Nissan Chemical Industries, Ltd., and the Astellas Foundation for Research on Metabolic Disorders for their financial support.

Keywords: 2-Acetyl-4-aryl-4-oxobutanoates - 3-Acetyl-1-arylpentane-1,4-diones • 2-(2-Aryl-2-oxoethyl)malonates • Dihydro-2H-pyrans • 5-endo-trig • 6-endo-trig • Manganese(III) acetate • Oxidative cyclization • Tandem cyclization • 2,3,3a,6a-Tetrahydrofuro[2,3-b]furans
[1] a) J. A. Joule, K. Mills, Heterocyclic Chemistry, $5^{\text {th }}$ ed., Wiley, 2010; b) S. Kawabata, A. Oishi, H. Nishino, Heterocycles 2017, 94, 1479-1505; c) J. Luo, D. Lu, Y. Peng, Q. Tang, Asian J. Org. Chem. 2017, 6, 1546-1550.
[2] a) W. J. de Klein, in Organic Syntheses by Oxidation with Metal Compounds, Eds. W. J. Mijis, C. R. H. I. de Jonge, Plenum Press, New York, 1986, pp 261-314; b) Radicals in Organic Synthesis, Vol. 1, Eds. P. Renaud, M. P. Sibi, Wiley-VCH, 2001; c) J. W. Burton, in Encyclopedia of Radicals in Chemistry, Biology and Materials, Eds. C. Chatgilialoglu, A. Studer, Wiley, 2012, pp 901-941; d) I. B. Krylov, A. O. Terent'ev, V. P. Timofeev, B. N. Shelimov, R. A. Novikov, V. M. Merkulova, G. I. Nikishin,

Adv. Synth. Catal. 2014, 356, 2266 - 2280; e) K. C. Nicolaou, C. R. H. Hale, C. Ebner, C. Nilewski, C. F. Ahles, D. Rhoades, Angew. Chem. Int. Ed. 2012, 51, 4726-4730; f) K. Hattori, A. Ziadi, K. Itami, J. Yamaguchi, Chem. Commun. 2014, 50, 4105-4107; g) H. Miyamura, S. Kobayashi, Chem. Lett. 2012, 41, 976-978; h) K. Oisaki, J. Abea, M. Kanai, Org. Biomol. Chem. 2013, 11, 4569-4572.
[3] a) J. Iqbal, B. Bhatia, N. K. Nayyar, Chem. Rev. 1994, 94, 519-564; b) Y. Ju, D. Miao, J. G. Seo, S. Koo, Adv. Synth. Catal. 2014, 356, 3059 3066; c) T.-T. Kao, C.-C. Lin, K.-S. Shia, J. Org. Chem. 2015, 80, 6708-6714.
[4] a) B. B. Snider, Chem. Rev. 1996, 96, 339-363; b) G. G. Melikyan, Org. React. 1997, 49, 427-675; c) C.-C. Tseng, Y.-L. Wu, C.-P. Chuang, Tetrahedron 2002, 58, 7625-7633; d) C.-Y. Lin, Y.-C. Cheng, A.-I. Tsai, C.-P.Chuang, Org. Biomol. Chem. 2006, 4, 1097-1103; e) H. Yokoe, C. Mitsuhashi, Y. Matsuoka, T. Yoshimura, M. Yoshida, K. Shishido, J. Am. Chem. Soc. 2011, 133, 8854-8857; f) L. Curry, M. S. Hallside, L. H. Powell, S. J. Sprague, J. W. Burton, Tetrahedron 2009, 65, 1088210892; g) M. Yllmaz, Tetrahedron 2011, 67, 8255-8263; h) B. Mitasev, J. Porco, Jr., Org. Lett. 2009, 11, 2285-2288; i) C.-P. Chuang, A.-I. Tsai, M. Y. Tsai, Tetrahedron 2013, 69, 3293-3301; j) W. Yuan, Y. Wei, M. Shi, Tetrahedron 2011, 67, 7139-7142; k) Y.-F. Wang, K. K. Toh, S. Chiba, K. Narasaka, Org Lett. 2008, 10, 5019-5022; I) E. Biçer, M. Yılmaz, E. V. Burgaz, A. T. Pekel, Helvetica Chem. Acta 2013,96, 135-141; m) H, P. Pepper, S. J. Tulip, Y. Nakano, J. H. George, J. Org. Chem. 2014, 79, 2564-2573; n) A. Bouhlel, C. Curti, P. Vanelle, Molecules 2012, 17, 4313-4325; o) M. Furuta, K. Hanaya, T. Sugai, M. Shoji, Tetrahedron 2017, 73, 2316-2322.
[5] a) Z.-Q. Cong, T. Miki, O. Urakawa, H. Nishino, J. Org. Chem. 2009, 74, 3978-3981; b) T. Tsubusaki, H. Nishino, Tetrahedron 2009, 65, 37453752; c) Y. Ito, T. Yoshinaga, H. Nishino, Tetrahedron 2010, 66, 26832694; d) Y. Ito, Y. Tomiyasu, T. Kawanabe, K. Uemura, Y. Ushimizu, H. Nishino, Org. Biomol. Chem. 2011, 9, 1491-1507; e) Y. Ito, S. Jogo, N. Fukuda, R. Okumura, H. Nishino, Synthesis 2011, 1365-1374; f) Y. Maemura, Y. Tanoue, H. Nishino, Heterocycles 2012, 85, 2491-2503; g) A. Haque, H. Nishino, J. Heterocycl. Chem. 2014, 51, 579-585; h) H. Nishino, R. Kumabe, R. Hamada, M. Yakut, Tetrahedron 2014, 70, 14371450; i) N. Kikue, T. Takahashi, H. Nishino, Heterocycles 2015, 90, 540562; j) R. Matsumoto, H. Nishino, Synth. Commun. 2015, 45, 1807-1816; k) C. Matsumoto, K. Yasutake, H. Nishino, Tetrahedron 2016, 72, 69636971; I) C. Akazaki, S. Kawabata, H. Nishino, Molbank 2016, 2016(4), M913, doi:10.3390/M913; m) T.-T. Huynh, V.-H. Nguyen, H. Nishino, Tetrahedron Lett. 2017, 58, 3617-3622.
[6] a) B. B. Snider, Tetrahedron 2009, 65, 10738-10744; b) K. Asahi, H. Nishino, Heterocycl. Commun. 2005, 11, 379-384; c) K. Asahi, H. Nishino, Tetrahedron 2005, 61, 11107-11124; d) T. Tsubusaki, H. Nishino, Tetrahedron 2009, 65, 9448-9459.
[7] V.-H. Nguyen, H. Nishino, Tetrahedron Lett. 2004, 45, 3373-3377. See also ref. [12].
[8] a) K. Asahi, H. Nishino, Tetrahedron Lett. 2006, 47, 7259-7262; b) K. Asahi, H. Nishino, Tetrahedron 2008, 64, 1620-1634.
[9] K. Asahi, H. Nishino, Eur. J. Org. Chem. 2008, 2404-2416.
[10] a) M. Gaudry, A. Marquet, Tetrahedron 1970, 26, 5611-5615; b) M. Gaudry, A. Marquet, Tetrahedron 1970, 56, 5617-5635.
[11] a) J. E. Baldwin, J. Chem. Soc., Chem. Commun. 1976, 734-736; b) J. E. Baldwin, R. C. Thomas, L. I. Kruse, L. Silberman, J. Org. Chem. 1977, 42, 3846-3852; c) C. Chatgilialoglu, C. Ferreri, M. Guerra, V. Timokhin, G. Froudakis, T. Gimisis, J. Am. Chem. Soc. 2002, 124, 10765-10772; d) Y. Morimoto, Y. Nishikawa, C. Ueba, T. Tanaka, Angew. Chem. Int. Ed. 2006, 45, 810-812; e) C. P. Johnston, A. Kothari, T. Sergeieva, S. I. Okovytyy, K. E. Jackson, R. S. Paton, M. D. Smith, Nature Chem. 2015, 7(2), 171-177; f) V. Rauhala, K. Nattinen, K. Rissanen, A. M. P. Koskinen, Eur. J. Org. Chem. 2005, 4119-4126; g) G. Illuminati, L. Mandolini, Acc. Chem. Res. 1981, 14, 95-102.

FULL PAPER

[12] X-ray coordinates of 7 bm were deposited with the Cambridge Crystallographic Data Centre (https://www.ccdc.cam.ac.uk), deposition number: CCDC 230145.

Entry for the Table of Contents (Please choose one layout)

FULL PAPER

The Mn (III)-based oxidative cyclization of tricarbonyl compounds with alkenes occurred depending on the nucleophilicity of the carbonyl oxygen and the kinetic and thermodynamic controls of the following reaction, and 2,3-dihydro-4H-pyran-4,4dicarboxylates, $\quad \gamma$-lactones, and 2,3,3a,6a-tetrahydrofuro[2,3-b]furans were produced.

Oxidative Cyclization

Thanh-Truc Huynh, Hiroyasu
Yamakawa, Van-Ha Nguyen and
Hiroshi Nishino*

Page No. - Page No.
Mn (III)-Based Oxidative Cyclization of Alkenes Using Tricarbonyl System

[^0]: [a] T.-H. Huynh, H. Yamakawa
 Department of Chemistry, Graduate School of Science and Technology, Kumamoto University,
 Kurokami, Chûou-Ku, Kumamoto 860-8555, Japan
 [b] Associate Prof. V.-H. Nguyen
 Department of Chemistry, Dalat University,
 1 Phu Dong Thien Vuong St., Dalat, Vietnam
 [c] Prof. H. Nishino
 Department of Chemistry, Graduate School of Science, Kumamoto University,
 Kurokami 2-39-1, Chûou-Ku, Kumamoto 860-8555, Japan
 E-mail: nishino@kumamoto-u.ac.jp
 Supporting information for this article is given via a link at the end of the document.

[^1]: [a] The reaction of alkene $1(1 \mathrm{mmol})$ was carried out in $\mathrm{AcOH}(15 \mathrm{~mL})$ at reflux temperature. [b] Molar ratio. [c] Isolated yield based on the amount of the alkene 1 used.

[^2]: [a] The reaction of alkene $1(0.5 \mathrm{mmol})$ was carried out in $\mathrm{AcOH}(20 \mathrm{~mL})$ at reflux temperature. [b] Molar ratio. [c] Isolated yield based on the amount of the alkene 1 used. [d] The reaction was carried out at $80^{\circ} \mathrm{C}$. [e] The reaction was carried out at $100^{\circ} \mathrm{C}$.

