
PHYSICAL REVIEW B 99, 045409 (2019)

Energy quantization at the three-quarter Dirac point in a magnetic field
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The quantization of the energy in a magnetic field (Landau quantization) at a three-quarter Dirac point is
studied theoretically. The three-quarter Dirac point is realized in the system of massless Dirac fermions with
the critically tilted Dirac cone in one direction, where a linear term disappears and a quadratic term α2q

2
x with

a constant α2 plays an important role. The energy is obtained as En ∝ α
3
5

2 (nB )
4
5 , where n = 1, 2, 3, . . . , by

means of numerically solving the differential equation. The same result is obtained analytically by adopting an
approximation. The result is consistent with the semiclassical quantization rule studied previously. The existence
of the n = 0 state is studied by introducing the energy gap due to the inversion-symmetry-breaking term, and it
is obtained that the n = 0 state exists in one of a pair of three-quarter Dirac points, depending on the direction
of the magnetic field when the energy gap is finite.

DOI: 10.1103/PhysRevB.99.045409

I. INTRODUCTION

Massless Dirac fermions are observed in condensed matter
physics, in graphene [1,2], organic conductors [3–5], and the
surface of the 3D topological insulators [6,7].

When a two-dimensional system has an inversion sym-
metry and a time-reversal symmetry, massless Dirac points
(±kD) appear as a pair. The minimal model for the massless
Dirac fermions is written as [8–10]

HD =
(

w0xqx + w0yqy wxqx ∓ iwyqy

wxqx ± iwyqy w0xqx + w0yqy

)
, (1)

where

q = k ∓ kD. (2)

Two bands touch at the Dirac points. When w0x = 0 and
w0y = 0, the linear energy dispersion near the Dirac point
(Dirac cone) is not tilted. By the finite w0x or w0y , the Dirac
cone is tilted, and if the condition(

w0x

wx

)2

+
(

w0y

wy

)2

= 1, (3)

is fulfilled, the Dirac cone is critically tilted, i.e., the conical
edge of the Dirac cone is horizontal in one direction. In
that case, we have to take into account the quadratic terms
in the tilted direction, except for the special case that the
quadratic terms vanish by symmetry or by accident. Gener-
ally, the quadratic terms exist as we have found previously
[11] in the tight-binding model with pressure-dependent hop-
pings for the organic conductor, α-(BEDT-TTF)2I3. The en-
ergy near the critically tilted Dirac point is shown in Fig. 1.
Since the energy of the upper band depends linearly in three
directions (for example, −qx and ±qy) and quadratically in
one direction (for example, +qx) in that case, we call the
critically tilted Dirac point the “three-quarter Dirac point”
[11]. It has been known that when two-Dirac points merge
at the time-reversal-invariant momentum, the energy depends

linearly in two directions and quadratically in two directions,
and it is called the semi-Dirac point [12–16].

Previously we have shown that the energy in a magnetic
field (the Landau level) at the three-quarter Dirac point de-
pends on the quantum number n and the magnetic field B as

εn ∝ (nB )
4
5 , (4)

by calculating the energy of the tight-binding model for
α-(BEDT-TTF)2I3 in a magnetic field numerically [11]. In
that paper, we explained these n and B dependences of
Landau levels by using the semiclassical quantization rule.
In this paper, we study the Landau quantization at the three-
quarter Dirac point in a numerical study and an analytical
treatment with a crude approximation. The Dirac cone is taken
to be critically tilted in the kx direction, i.e., w0x = −wx , and
w0y = 0 in Eq. (1). For simplicity, we take wx > 0, wy > 0,
and we introduce the quadratic terms in the qx direction (α′

2q
2
x

in diagonal elements and α′′
2q2

x in off-diagonal elements).
Then the three-quarter Dirac Hamiltonian we study in this
paper is

HtqD =
(

−wxqx + α′
2q

2
x wxqx + α′′

2q2
x − iwyqy

wxqx + α′′
2q2

x + iwyqy −wxqx + α′
2q

2
x

)
.

(5)

II. THREE-QUARTER DIRAC POINT

A. Energy at B = 0

In the absence of the magnetic field, the energy is obtained
by

HtqD� = E(q)�, (6)

where � is a wave function which has two components,
�1 and �2. The eigenvalues of HtqD are obtained as
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FIG. 1. Energy as a function of qx and qy at B = 0 at the three-
quarter Dirac point. Parameters are wx = 0.4, wy = 1, w0x = −wx ,
w0y = 0, α′

2 = α′′
2 = 0.01.

E(q) = ε0
tqD±

(q), where

ε0
tqD±

(q) = − wxqx + α′
2q

2
x

±
√(

wxqx + α′′
2q2

x

)2 + (wyqy )2, (7)

which are plotted in Fig. 1. There exist the upper band
[ε0

tqD+
(q)] and the lower band [ε0

tqD−
(q)]. These two bands

touch at q = (0, 0). Along the qx axis, the linear term dis-
appears in ε0

tqD+
(q) and ε0

tqD−
(q) for qx > 0 and qx < 0,

respectively, whereas in the other three directions the linear
term exists:

εtqD+ (qx, qy = 0) =
{

α2q
2
x if qx > 0

2wx |qx | + α̃2q
2
x if qx < 0

, (8)

εtqD+ (qx = 0, qy ) = wy |qy |, (9)

εtqD− (qx, qy = 0) =
{

−2wxqx + α̃2q
2
x if qx > 0

α2q
2
x if qx < 0

, (10)

εtqD− (qx = 0, qy ) = −wy |qy |,
(11)

where

α2 = α′
2 + |α′′

2 |, (12)

and

α̃2 = α′
2 − |α′′

2 |. (13)

If α2 > 0, q = 0 is a local minimum of εtqD+ with the linear
dispersion in three directions (qx < 0, qy > 0 and qy < 0) and
quadratic dispersion in one direction (qx > 0). Note that the
three-quarter Dirac point is neither the local maximum nor the
local minimum of εtqD− if α2 > 0. If α2 < 0, the three-quarter

Dirac point is the local maximum of εtqD− , but it is neither the
local maximum nor the local minimum of εtqD+ .

B. Numerical results of the energy at B > 0, using
boundary condition at y > 0

Hereafter we study the case α2 > 0, i.e., the three-quarter
Dirac point is the minimum of ε0

tqD+
, as shown in Fig. 1. In

this case, it is expected that when the magnetic field is applied,
there are the almost-localized bound states (the Landau levels)
at E > 0, since there exists a closed Fermi surface at E > 0
in the ε0

tqD+
band, and the semiclassical Landau quantization

is expected for the closed orbit. On the other hand, the Fermi
surface in the ε0

tqD−
band is open and a continuous energy

is expected in the ε0
tqD−

band even in the presence of the
magnetic field. Quantum mechanically, the Landau levels in
the ε0

tqD+
band couple to the continuous energy in the ε0

tqD−
band by quantum tunneling. In this subsection, we show that
the coupling between the almost-localized Landau levels and
the continuous energy cannot be neglected for the quantized
energy with the small quantum number, n, but it becomes
small for the larger values of n.

In the presence of the magnetic field B (B = ∇ × A, where
A is the vector potential), we replace qx and qy as

qx → −ih̄
∂

∂x
+ eAx, (14)

qy → −ih̄
∂

∂y
+ eAy. (15)

We study the case that the uniform magnetic field B > 0 is
applied along the z direction. We take the vector potential as

A = (−By, 0, 0). (16)

Since there is no explicit x in Eq. (6), we can write

�(x, y) = eikxx

(
�1(y)

�2(y)

)
. (17)

In this case, we take

qx → h̄kx − eBy ≡ −eB�ȳ, (18)

where the magnetic length � is defined as usual,

� =
√

h̄

eB
, (19)

and ȳ is the dimensionless length. Hereafter, we write ȳ as y

for simplicity.
Then the equation we study is(

(H̃tqD)11 (H̃tqD)12

(H̃tqD)21 (H̃tqD)22

)(
�1(y)

�2(y)

)
= E

(
�1(y)

�2(y)

)
, (20)

where

(H̃tqD)11 = wy

√
h̄eB

(
wx

wy

y + α′
2

√
h̄eB

wy

y2

)
, (21)

(H̃tqD)12 = wy

√
h̄eB

(
− d

dy
− wx

wy

y + α′′
2

√
h̄eB

wy

y2

)
, (22)
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(H̃tqD)21 = wy

√
h̄eB

(
d

dy
− wx

wy

y + α′′
2

√
h̄eB

wy

y2

)
, (23)

(H̃tqD)22 = (H̃tqD)11, (24)

where wy

√
h̄eB = h̄wy/� is the energy scale for the massless

Dirac fermions. There are other dimensionless parameters,
wx/wy , α′

2

√
h̄eB/wy , and α′′

2

√
h̄eB/wy . We assume that

wx/wy is order of 1 and we mainly study the case wx = wy

in this paper. Other two dimensionless parameters are taken to
be small, i.e.,

α′
2

√
h̄eB/wy 	 1, (25)

α′′
2

√
h̄eB/wy 	 1. (26)

We will show that the sum of these small dimensionless
parameters (α2

√
h̄eB/wy) plays an important role in the

quantization of energies for almost-localized states in the
magnetic field, but the difference (α̃2

√
h̄eB/wy) is irrelevant

when these parameters are small. In other words, there is
another length scale �α2

√
h̄eB/wy = h̄α2/wy .

We seek the solution of Eq. (20) with E � 0, which
satisfies the conditions at y → −∞:

�1(y) → 0, (27)

�2(y) → 0. (28)

Note that y → −∞ corresponds to qx → +∞, as seen in
Eq. (18). When y → +∞, �1(y) and �2(y) do not have to
vanish because the lower band becomes positive when qx →
−∞ at B = 0 as seen in Fig. 1. Therefore, the conditions,
Eqs. (27) and (28) at y → −∞, do not make the energy
quantized. There is the solution for any value of E, but
the conditions, Eqs. (27) and (28) at y → −∞, make the
restriction for the solutions. We solve the differential equa-
tions, Eq. (20), numerically by the fourth-order Runge-Kutta
method in this and the next subsections. We take the step size
in the Runge-Kutta method to be 0.01. Since Eq. (20) is the
real linear differential equations, the solutions can be taken
as real functions, and the solutions multiplied by any constant
values give the same solutions. Therefore, for each value of E,
the only adjustable parameter to obtain the solution numeri-
cally by the Runge-Kutta method starting from a fixed y =
y+ > 0 and decreasing y is the ratio �2(y+)/�1(y+). In this
subsection, we take y+ = 20. It is convenient to parametrize
the ratio in terms of the angle θ defined by

�2(y = 20)

�1(y = 20)
= tan θ. (29)

The numerically obtained solution diverges as y becomes a
negative large value, if the chosen θ is not a suitable value
for the given E. Only when θ is the correct value for E, the
numerically obtained solution becomes zero as y → −∞. In
this way, we determine θ for any given E > 0. The boundary
condition θ depends on the choice of y+ and it does not
have an important meaning. The E dependence of θ , however,
is important to obtain the almost-localized state. When E

is changed continuously, θ changes continuously. Note that
the energy is semiclassically quantized by the magnetic field,
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FIG. 2. Wave functions in the three-quarter Dirac point ob-
tained numerically with E/(wy

√
h̄eB ) = 0.3 (a), 0.31 (b), 0.32

(c), and 0.33 (d). Parameters are wx = wy = 1, w0x = −1, w0y =
0, α′

2

√
h̄eB/wy = α′

2

√
h̄eB/wy = 0.01, and B = 1. The boundary

condition at y = 20 is taken to be Eq. (29).

since the closed Fermi surface ε0
tqD+

(q) exists at B = 0. Quan-
tum mechanically, these quantized states in y � 0 couple to
the continuous-energy states, which exist mainly in y � 0, by
tunneling. With this mixing of the states, θ changes by π in the
small region of energy variation. Note that θ and θ + nπ with
integer n give the same condition. We show some examples of
the solutions for 0.3 � E/(wy

√
h̄eB ) � 0.33 in Figs. 2 and 3

and for 0.52906 � E/(wy

√
h̄eB ) � 0.52907 in Fig. 4, where

we have normalized the wave functions numerically as∫ 20

−10
(|�1(y)|2 + |�2(y)|2)dy = 1. (30)

Almost-localized states in y � 0 exist at E/(wy

√
h̄eB ) ≈

0.3108 and 0.529065. The wave functions (�1(y),�2(y))
at E = 0.3105 and 0.3108 with the suitable boundary con-
ditions have one node of �1(y) and �2(y) in y � 0,
as seen in Figs. 3(a) and 3(b), and the wave functions
at E/(wy

√
h̄eB ) = 0.52906, 0.529065, and 0.52807 have

two nodes in y � 0, as seen in Figs. 4(a)–4(c). Therefore,
E/(wy

√
h̄eB ) ≈ 0.3108 and E/(wy

√
h̄eB ) ≈ 0.529065 are

the almost-localized states energies with n = 1 and n = 2,
respectively. Due to the tunneling, these almost-localized
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FIG. 3. Wave functions in the three-quarter Dirac point obtained
numerically with E/(wy

√
h̄eB ) = 0.3105 (a), and 0.3108 (b). Pa-

rameters are wx = wy = 1, w0x = −1, w0y = 0, α′
2

√
h̄eB/wy =

α′′
2

√
h̄eB/wy = 0.01, and B = 1. The boundary condition at y = 20

is taken to be Eq. (29).
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FIG. 4. Wave functions in the three-quarter Dirac point ob-
tained numerically with E/(wy

√
h̄eB ) = 0.52906 (a), 0.529065 (b),

and 0.52907 (c). Parameters are wx = wy = 1, w0x = −1, w0y =
0, α′

2

√
h̄eB/wy = α′′

2

√
h̄eB/wy = 0.01, and B = 1. The boundary

condition at y = 20 is taken to be Eq. (29).

states are not completely localized in the region y � 0,
which corresponds to the region qx � 0 in the case of B = 0
[see Eq. (18) and Fig. 1]. This interpretation of the almost-
localized states in three-quarter Dirac point is justified by
plotting θ as a function of energy (Fig. 5). As seen in
Fig. 5, θ changes continuously as E increases. When the
energy is close to one of the energies of the almost-localized
states, θ changes by π in a narrow range of E. At n = 2,
(E/(wy

√
h̄eB ) ≈ 0.529065) θ changes in a narrower range

of the energy E than at n = 1 (E/(wy

√
h̄eB ) ≈ 0.3108).

The narrowing of the range in θ is reasonable because the
tunneling of the almost-localized state at y � 0 into the region
of y � 0 is weaker at n = 2 than at n = 1. In Fig. 6, we
plot εtqD± (qx, qy = 0) at B = 0 [Eqs. (8) and (10)] with
replacing qx → −eB�y [Eq. (18)] divided by the energy scale

FIG. 5. Boundary condition θ at y = 20 [Eq. (29)] as a function
of energy for wx = wy = 1, w0x = −1, w0y = 0, α′

2

√
h̄eB/wy =

α′′
2

√
h̄eB/wy = 0.01, and B = 1. (b) and (c) are the close-up of

(a) near the energy of the almost-localized states at y � 0.
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FIG. 6. Green lines are εtqD± (qx, qy = 0)/(wy

√
h̄eB )

as a function of y = −qx/(�eB ) = −qx/
√

h̄eB, i.e.
E/(wy

√
h̄eB ) = (α2

√
h̄eB/wy )y2 and E/(wy

√
h̄eB ) =

(2wx/wy )y + (α̃2

√
h̄eB/wy )y2. Classical particles can exist

in the cyan-shaded regions. Wave functions of almost-localized state
with the quantum number n = 1, 2, 3, and 4 near the three-quarter
Dirac point are plotted as functions of y. Zero of the wave functions
are shifted to their energies. Wave functions are calculated with
the boundary conditions at y = −15 as in Sec. II C. Parameters
are B = 1, wx = wy = 1, w0x = −1, w0y = 0 in (a) and (b), and
α′

2

√
h̄eB/wy = α′′

2

√
h̄eB/wy = 0.005 (α2

√
h̄eB/wy = 0.01) in

(a) and α′
2

√
h̄eB/wy = α′′

2

√
h̄eB/wy = 0.0025 (α2

√
h̄eB/wy =

0.005) in (b).

of the massless Dirac fermions (wy

√
h̄eB) as a function

of dimensionless length y for the dimensionless parameter
α2

√
h̄eB/wy = 0.01 (a) and 0.005 (b). In these figures, we

also plot the wave functions of the almost-localized states at
y � 0 with the quantum number n = 1 − 4, which are calcu-
lated using the boundary condition at y = y− < 0 discussed
in the next subsection. Classically, electrons can exist in the
cyan-shaded regions in Fig. 6, and they can exist only by the
quantum tunneling effect in the white regions. For the larger
energy (larger quantum number n), the width and the hight
of the classically forbidden region (white region in Fig. 6)
is larger. As a result, the tunneling of the almost-localized
state with the larger quantum number at y � 0 into the y � 0
region becomes smaller. Therefore, the numerical solutions
of the bound states n � 3 are difficult to obtain by using the
boundary condition at y = y+ > 0, Eq. (29), since θ changes
by π in a very narrow region in energy. On the other hand,
the almost-localized state with the quantum number n = 1
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couples strongly to the continuous states at y � 0 as seen
in Fig. 5(b), and the energy of the almost-localized state is
“broadened.”

In the next subsection, we use the boundary condition at
y < 0 to obtain the energy of the bound states.

C. Numerical results of energy at B > 0, using boundary
condition at y < 0

As shown in the previous subsection, it is difficult to obtain
the energy of the almost-localized states at y � 0 with a large
quantum number n in Eq. (20) by using the boundary con-
dition at y = y+ > 0, since the boundary condition changes
in a very narrow region and the energy of the almost-localized
states at y � 0 may be overlooked. Therefore, we try to obtain
the energy by using the boundary conditions at y < 0. We
study the solutions of Eq. (20) at y → −∞, assuming

�j (y) = cj (y)e−g(y), (31)

(j = 1, 2) and

d�j

dy
=

(
−dg(y)

dy
cj (y) + dcj (y)

dy

)
e−g(y)

∼ −dg(y)

dy
cj e

−g(y), (32)

as y → −∞. Then we obtain the equation(
(H̃tqD)11 (F̃tqD)12

(F̃tqD)21 (H̃tqD)22

)(
�1(y)
�2(y)

)
≈ E

(
�1(y)
�2(y)

)
, (33)

where (H̃tqD)11 and (H̃tqD)22 are given in Eqs. (21) and (24)
and

(F̃tqD)12 = wy

√
h̄eB

(
dg

dy
− wx

wy

y + α′′√h̄eB

wy

y2

)
, (34)

(F̃tqD)21 = wy

√
h̄eB

(
−dg

dy
− wx

wy

y + α′′√h̄eB

wy

y2

)
. (35)

The nontrivial solution exists when the condition

det

(
(H̃tqD)11 − E (F̃tqD)12

(F̃tqD)21 (H̃tqD)22 − E

)
= 0 (36)

is fulfilled, i.e.,(
dg

dy

)2

=
(

α2

√
h̄eB

wy

y2 − E

wy

√
h̄eB

)

×
(

−2wx

wy

y − α̃2

√
h̄eB

wy

y2 + E

wy

√
h̄eB

)
, (37)

In the simple case that α2 > 0, α̃2 = 0 (i.e., α′ = α′′ =
α2/2), and large |y|, we can neglect terms proportional to E.
Then the approximate solution is

g(y) ∼ ±2
√

2α2wx

√
h̄eB

5wy

(−y)
5
2 + const. (38)
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FIG. 7. Wave function �1(y ) in the three-quarter Dirac point
obtained numerically by using the boundary condition at y = −10.
Parameters are wx = wy = 1, w0x = −1, w0y = 0, α′

2

√
h̄eB/wy =

α′′
2

√
h̄eB/wy = 0.01, and B = 1. We take several values of E, and

we find that an eigenvalue for the almost-localized eigenstates at
y < 0 exists in the region 0.310 < E/(wy

√
h̄eB ) < 0.311.

The solution which does not diverge at y → −∞ is obtained
as (

�1

�2

)
∼ exp

(
−2

√
2α2wx

√
h̄eB

5wy

(−y)
5
2

)(
c1

c2

)
. (39)

Inserting Eq. (39) into Eq. (33) we obtain the approximate
boundary condition at y → −∞ as

�1(y)

�2(y)
∼ c1(y)

c2(y)

∼ wx + α′
2B

√
h̄eBy

wx − α′′
2

√
h̄eBy −

√
2α2wx

√
h̄eB(−y)

. (40)

With this boundary condition at y = y− = −10.0 we solve the
differential Eq. (20) numerically in the Runge-Kutta method
with increasing y. When we take E to be one of the correct
values of the Landau levels, the wave function is almost-
localized states at y � 0 and tunnels to y > 0 very little.
On the other hand, if we take the different value of E, the
wave function becomes large as y is increased at y > 0,
although it does not diverge. As shown in Fig. 7, the wave
function in the region y > 0 calculated numerically with the
boundary condition at y− = −10 becomes small only when
we take the correct eigenvalue 0.310 < E < 0.311. This value
is consistent with the n = 1 eigenvalue obtained numerically
with the boundary condition at y+ = 20 (Fig. 3). We also
check numerically that the solution is not sensitive to the
boundary condition; numerically the same result is obtained
even when we take �1 = 0 and �2 = 0 at y = y− = −10.
The independence on the boundary condition can be under-
stood as follows. As seen in Sec. II B, the coupling between
the almost-localized states at y � 0 and the continuous state
as y � 0 is small for n � 2. In Sec. II B, we first fixed the
energy and obtain the wave functions not divergent at y →
−∞ by changing the boundary condition at y+ > 0 (θ at y+ =
20). In this section, we first take the approximate boundary
condition at y− = −10, and obtain the energy which gives the
smallest amplitude of oscillations of the wave function at y >

0. Even though the boundary condition is not exact, suitable
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FIG. 8. Wave functions of almost-localized eigenstates at y < 0
with quantum number (a) n = 0, (b) n = 1, (c) n = 2, (d) n =
3, (e) n = 4, (f) n = 5, and (g) n = 6 in the three-quarter Dirac
point obtained numerically with the boundary condition at y = −10.
Parameters are wx = wy = 1, w0x = −1, w0y = 0, α′

2

√
h̄eB/wy =

α′′
2

√
h̄eB/wy = 0.01, and B = 1.

linear combination of the almost-localized states at y � 0
and continuous state as y � 0 may give the nondivergent
solution with the given boundary condition at y = y−, if the
energy is the correct energy of the almost-localized states at
y � 0.

In Fig. 8, we show the wave functions for almost-localized
states with quantum numbers n = 0 – 6. For n = 0, i.e., E =
0, both components of the wave function have a broad peak at
y = 0, although each component of the wave function is not
small at y > 0, as shown in Fig. 8(a). The oscillation of the
wave function at y > 0 can be understood as the continuous
energy states at y > 0. Since the upper band touches the lower
band at the three-quarter Dirac point without the boundary
barrier, the almost-localized eigenstates at y < 0 goes through
to the region y > 0. We will discuss the n = 0 state in the next
section.

The eigenstate for n � 1 is obtained by taking the suitable
value of E, which minimizes the amplitude of oscillation of
the wave function in the region y > 0. We find the tunneling

FIG. 9. Energy as a function of the quantum number n for the
three-quarter Dirac point. Parameters are wx = wy = 1, w0x = −1,
w0y = 0, and B = 1. We take two choices of parameters giving the
same α2, α′

2

√
h̄eB/wy = α′′

2

√
h̄eB/wy = 0.01 and α′

2

√
h̄eB/wy =

0.02, α′′
2 = 0. The obtained values of the energy is well fitted by the

red broken line (E ∝ 0.3n
4
5 ).

through the barrier is smaller as n becomes larger, as we have
discussed in the previous subsection.

We also calculate the energy as a function of quantum
number n with different choice of parameters α′

2

√
h̄eB/wy

= 0.02 and α′′
2 = 0 from these used in Fig. 8 (α′

2

√
h̄eB/wy =

α′′
2

√
h̄eB/wy = 0.01). We plot the energy as a function of n

in Fig. 9. We obtain

En ∝ n
4
5 . (41)

In Figs. 10 and 11, we plot the energy as a function of α2 and
B, respectively. We obtain

En ∝ α
3
5
2 (nB )

4
5 . (42)

We have previously obtained n and B dependence at the three-
quarter Dirac point [Eq. (42)] in the tight-binding model of
α-(BEDT-TTF)2I3 at the critical pressure [11].

FIG. 10. Energy with the quantum number n = 3 as a function
of α2 for the three-quarter Dirac point. Parameters are wx = wy = 1,
w0x = −1, w0y = 0, α′′

2 = 0, and B = 1.

045409-6



ENERGY QUANTIZATION AT THE THREE-QUARTER … PHYSICAL REVIEW B 99, 045409 (2019)

FIG. 11. Dimensionless energy [E/(wy

√
h̄eB0 ) with B0 = 1] as

a function of magnetic field B at the three quarter Dirac point. It is
well fitted as a function of B

4
5 .

D. Analytical study with approximation in the magnetic-field-
and α2-dependence of the Landau levels at the three-quarter

Dirac point

In this subsection, we give the analytical derivation of
Eq. (42). Taking a sum and a difference, we obtain the
equations [

α2

√
h̄eB

wy

y2 − E

wy

√
h̄eB

]
(�1 + �2)

+ d

dy
(�1 − �2) = 0, (43)[

2wx

wy

y + α̃2

√
h̄eB

wy

y2 − E

wy

√
h̄eB

]
(�1 − �2)

− d

dy
(�1 + �2) = 0. (44)

In the three-quarter Dirac case studied in this paper, the term
proportional to y in Eq. (43) does not exist and the term
proportional to y2 in Eq. (43) cannot be neglected, while
the term proportional to y2 in Eq. (44) can be neglected.
Then there appear dimensionless parameters α2

√
h̄eB/wy

and wx/wy . The energy depends not only the energy scale
wy

√
h̄eB but also these dimensionless parameters. Therefore,

we may expect

E ∝
(
wy

√
h̄eB

)(
α2

√
h̄eB

wy

)β(
wx

wy

)η

nδ, (45)

where n is the quantum number of the almost-localized eigen-
states at y � 0. We determine the exponents, β, η and δ. We
take

β > 0, (46)

to obtain E → 0 as α2 → 0. The almost-localized state has
the finite absolute value of |�1 + �2| in the region

−y0 � y � 0, (47)

and it is exponentially small in the region

y � −y0, (48)

where the dimensionless length y0 is determined by the equa-
tion

α2

√
h̄eB

wy

y2
0 = E

wy

√
h̄eB

∼
(

α2

√
h̄eB

wy

)β(
wx

wy

)η

nδ. (49)

Then y0 depends on the dimensionless parameters as

y0 ∼
(

α2

√
h̄eB

wy

) β−1
2 (

wx

wy

) η

2

n
1
2 δ. (50)

We expect〈∣∣∣∣ d

dy
(�1 − �2)

∣∣∣∣
〉

∼ 2cn

y0
〈
√

|�1 − �2|2〉, (51)

where 〈· · · 〉 is the spacial average in y0 � y � 0 and c is a
dimensionless constant of order 1. This approximation is not
justified for small n. However, we may consider that (�1 −
�2) changes sign n times in the length of y0, i.e., (�1 − �2)
changes from ±c〈

√
|�1 − �2|2〉 to ∓c〈

√
|�1 − �2|2〉 period-

ically in the half period (y0/n). Approximating the oscillation
of (�1 − �2) by a triangle wave, we obtain Eq. (51). This
crude approximation will give an approximate dependence
on n and y0 in Eq. (51) in the limit of n � 1. With this
approximation we obtain

〈
√

|�1 − �2|2〉
〈
√

|�1 + �2|2〉
∼

(
α2

√
h̄eB

wy

) 3β−1
2 (

wx

wy

) 3
2 η

(2cn)
3δ−2

2 (52)

by taking the spacial average in Eq. (43). Next, we examine
Eq. (44) in the same way. The second term and the third term
in the coefficient of �1 − �2 in Eq. (44), which depend on the

dimensionless parameter as (α2

√
h̄eB/wy )

β
, can be neglected

with respect to the first term in the coefficient of �1 − �2,
since we study the case

α2

√
h̄eB

wy

	 wx

wy

. (53)

Then we obtain

〈
√

|�1 − �2|2〉
〈
√

|�1 + �2|2〉
∼

(
α2

√
h̄eB

wy

)1−β(
wx

wy

)1−η

(2cn)−δ−1.

(54)

Comparing Eqs. (52) and (54), we obtain

β = 3
5 , (55)

η = − 2
5 , (56)

and

δ = 4
5 . (57)

Inserting these exponents in Eq. (45), we obtain

E ∼ w
− 2

5
x w

4
5
y α

3
5
2 (nh̄eB )

4
5 . (58)

In the Appendix, we give a simpler derivation of Eq. (58).
This result is consistent with the result obtained by the

semiclassical quantization rule in the previous paper [11], in
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FIG. 12. Schematic plot of the areas of the Fermi surface and the
density of states as a function of energy for the three-quarter Dirac
fermion, massless 2D Dirac fermion, 2D free fermion, and 2D semi
Dirac fermion [12,13]. The density of states are scaled to be 1 at
ε = 1.

which the energy is quantized as

A(En) ∝ (n + γ )B, (59)

where γ is a phase factor (γ = 1/2 for 2D free electrons
and semi-Dirac fermions and γ = 0 for Dirac fermions and
three-quarter Dirac fermions) and A(ε) is the area of the Fermi
surface in the 2D k-space at B = 0 with the Fermi energy ε.
The area, A(ε), and the density of states, D(ε), are related by

1

4π2

dA(ε)

dε
= D(ε). (60)

We plot A(ε) and D(ε) in Fig. 12. In the three-quarter Dirac
case, we have obtained [11]

A(ε) ∝ α
− 3

4
2 ε

5
4 , (61)

in the limit ε → 0, and

En ∝ α
3
5
2 (nB )

4
5 . (62)

III. FINITE ENERGY GAP AND n = 0 STATE

In this section, we study the n = 0 state by introducing the
energy gap in the three-quarter Dirac point, which may be
caused by a difference of the site energy in two sublattices,

H′
tqD = HtqD +

(
� 0
0 −�

)
, (63)

where 2|�| is the energy gap at the three-quarter Dirac point.
Note that the minimum of the upper band is not at the three-
quarter Dirac point (q = 0) and the minimum energy of the
upper band is not |�|. Then the equation we study at B = 0 is(

(H̃tqD)11 + � (H̃tqD)12

(H̃tqD)21 (H̃tqD)22 − �

)(
�1(y)

�2(y)

)
=E

(
�1(y)

�2(y)

)
.

(64)

Although the energy dispersion at B = 0 (Fig. 13) does
not depend on the sign of �, the quantized energies at B = 0
are not the same for ±� = 0. We take α′

2 = α′′
2 = 0.01 and

B = 1 and calculate the wave functions numerically with the
boundary condition at y = 20, as in Sec. II B. We plot the
boundary condition θ to exist a nondivergent solution as a

FIG. 13. Energy at B = 0 as a function of qx and qy with param-
eters wx = 0.4, wy = 1, α′

2 = α′′
2 = 0.01, w0x = −wx , w0y = 0, and

� = ±0.3.

function of energy in Fig. 14. For � � −0.1, θ changes in
a narrow region of E, which indicate that an almost-localized
state exists at y � 0 as shown in Figs. 15(a) and 15(b), while
the variation of θ as a function of E becomes broad for
� � −0.1, which indicates that an almost-localized state at
y � 0 couples strongly to the continuous energy state at y > 0
and an almost-localized state ceases to exist at y � 0 as shown
in Figs. 15(c) and 15(d). We think that the eigenstate with
n = 0 does not exist when � > 0, but the almost-localized
state exists at y � 0 when � � 0. The effect of the tunneling
would become important as � approaches to zero and the
almost-localized n = 0 state at y � 0 couples strongly to the
continuous energy levels in y > 0. This situation that the n =
0 mode exists only when � � 0 is similar to the model studied
by Haldane [17], where the zero mode exists either upper band
or lower band depending on the sign of the mass, which is �

in the present model, and the direction of the magnetic field. In

FIG. 14. Boundary condition θ at y = y+ = 20 [Eq. (29)], which
makes |�1,2(y )| → 0 at y → −∞, as a function of the energy.
We take parameters wx = wy = 1, α′

2

√
h̄eB/wy = α′′

2

√
h̄eB/wy =

0.01, � = 0.3, 0.2, . . . , −0.3, −0.4, and B = 1.
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FIG. 15. Wave functions for (a) � = −0.1, E/(wy

√
h̄eB ) =

0.06, (b) � = −0.3, E/(wy

√
h̄eB ) = 0.10, (c) � = 0.1,

E/(wy

√
h̄eB ) = 0.06, and (d) � = 0.3, E/(wy

√
h̄eB ) = 0.10,

Other parameters are wx = wy = 1, α′
2

√
h̄eB/wy = α′′

2

√
h̄eB/wy =

0.01, and B = 1. Boundary conditions at y = 20 (θ ) are taken as
in the case of � = 0 in Sec. II B. The wave functions have
large amplitudes in y � 0 region, when � < 0 [(a) and (b)],
while no peaks are seen in y � 0 region, when � > 0 [(c) and
(d)].

our model, the almost-localized eigenstates with n = 0 exists
when � � 0. The n = 0 (E = 0) state at � = 0 in Fig. 8(a) is
understood as the zero-mode of the almost-localized state at
three-quarter Dirac point, which couples strongly to the con-
tinuous states at y � 0. Note that the simultaneous changes of
B ↔ −B, y ↔ −y, �1 ↔ �2, and � ↔ −� do not change
Eq. (64).

IV. SUMMARY

We study the quantized energy at the three-quarter Dirac
point in the presence of external magnetic field B. We ob-

tain that the quantized energy is proportional to α
3
5
2 (nB )

4
5

[Eq. (42)] by calculating the solution of the differential
equation [Eq. (20)] numerically. We also obtain the ap-
proximate result in the limit of |α2

√
h̄eB/wy | 	 1 as E ∝

w
− 2

5
x w

4
5
y α

3
5
2 (nh̄eB )

4
5 [Eq. (58)], which is consistent with the

result obtained in the previous paper [11] by using the semi-
classical quantization rule. We show that the zero mode exists
by studying the finite-gap system. Since the three-quarter
Dirac points with the finite gap appear as a pair when the
time-reversal symmetry is not broken at B = 0, sign of �

is positive at one finite-gap three-quarter Dirac point and
negative at another point. As a result, there is one zero mode
in the system when B = 0 and � = 0.

The quantization of the energy in the three-quarter
Dirac point in a magnetic field can be observed experi-
mentally in quasi-two-dimensional organic superconductor
α-(BEDT-TTF)2I3 [11] and ultracold Fermi gas on a tunable
optical lattice [18].

APPENDIX: ANOTHER DERIVATION
OF E ∝ α

3
5

2 B
4
5

From Eq. (20), we formally obtain the equation

det

(
M N−
N+ M

)
= 0, (A1)

where

M = wx

wy

y + α′
2

√
h̄eB

wy

y2 − E

wy

√
h̄eB

, (A2)

N± = ± d

dy
− wx

wy

y + α′′
2

√
h̄eB

wy

y2, (A3)

to get

E

wy

√
h̄eB

= wx

wy

y + α′
2

√
h̄eB

wy

y2

±

√√√√(
−wx

wy

y + α′′
2

√
h̄eB

wy

y2

)2

− d2

dy2
. (A4)

The almost-localized state in y < 0 is obtained by taking the
expansion ∣∣∣∣ d2

dy2

∣∣∣∣ 	
(

−wx

wy

y + α′′
2

√
h̄eB

wy

y2

)2

. (A5)

Then we obtain

E

wy

√
h̄eB

∼ α2

√
h̄eB

wy

y2 − wy

2wx

1

(−y)

d2

dy2
, (A6)

where we have used∣∣∣∣∣α
′′
2

√
h̄eB

wy

y2

∣∣∣∣∣ 	
∣∣∣∣wx

wy

y

∣∣∣∣. (A7)

Taking a new variable Y as

y =
(

α2

√
h̄eB

wy

)σ(
wx

wy

)ν

Y, (A8)

and making the two terms in the right hand side of Eq. (A6)
to be the same order in the dimensionless parameters
α
√

h̄eB/wy and wx/wy , we obtain

σ = − 1
5 , (A9)

and

ν = − 1
5 . (A10)

Then we obtain

E ∼ wy

√
h̄eB

(
α2

√
h̄eB

wy

) 3
5 (

wx

wy

)− 2
5

×
(

Y 2 − 1

(−2Y )

d2

dY 2

)
. (A11)

Since Y does not depend on any parameters, we obtain

E ∼ w
− 2

5
x w

4
5
y α

3
5
2 (h̄eB )

4
5 . (A12)
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