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ABSTRACT 

A method for measurement of stress change is suggested to monitor rock stress using a borehole. The two-dimensional state of 

stress change in a plane perpendicular to the axis of a borehole drilled within a rock mass can be measured by this method, which is 

named the Cross-sectional Borehole Deformation Method (CBDM). In this paper, the theory of the CBDM is firstly described, as 

well as the prototype instrument and theoretical procedure for correcting eccentric positioning of the instrument in the borehole. 

Then the estimation of the stress change is demonstrated in a laboratory experiment, using a granite plate with a borehole. Finally, 

applying the CBDM to measured stress change around an underground cavern during and after excavation, the changes of rock 

stress distribution around the cavern is shown. It makes clear that stress change in the immediate rock mass of the cavern can be 

estimated by the CBDM and that the CBDM is available for measuring rock stress change. 

Keywords: Rock stress measurement, Stress change, Cross-sectional Borehole Deformation Method (CBDM), In-situ Measurement  

1. INTRODUCTION 

Knowledge of rock stresses, such as initial stress and 

induced stress, is of fundamental importance for designing 

and constructing rock structures. In order to measure initial 

stress, many methods have been suggested. On the other hand, 

there are some methods for stress change around an opening 

under construction. For example, the stress change of an 

underground power house has been measured by a vibrating 

wire strain gauge in Japan (Kudo et al. 1998). However, using 

this gauge, the stress in only one direction in a plane 

perpendicular to a borehole axis is measured. 

The Cross-sectional Borehole Deformation Method 

(CBDM) developed by Taniguchi et al. (2003) and Obara et 

al. (2004, 2010, 2011a, b, 2012 a, b) is a method by which the 

two-dimensional state of stress change within a rock mass in 

a plane perpendicular to a borehole axis can be measured. 

Kiguchi and Kuwahara (2013) and Kawabe et al. (2005) have 

developed instruments having the same concept of the 

authors. The instrument suggested by Kiguchi et al. was 

installed in a vertical borehole with a diameter of more than 

100mm just after drilling, then the change of the 

cross-sectional shape of the borehole was measured by a laser 

displacement sensor with a resolution of 0.7m. They 

estimated only orientation of principal directions in the 

horizontal plane without magnitude of principal stresses. On 

the other hand, the instrument developed by Kawabe et al. 

was installed in a borehole with a diameter of 76 to 100mm. 

The laser displacement sensor which was used has a 

measurement range of 30 to 50mm with a resolution of 2m. 

This resolution is insufficient for measuring displacement of 

hard rock due to small stress changes. In this method, they 

tried to estimate the stress state in the perpendicular of a 

borehole axis in a laboratory experiment. However, they did 

not discuss the evaluated result in the case that the axes of the 

borehole and the instrument did not coincide with each other 

– namely, an eccentric position of the instrument. This 

coincidence of both axes is an important factor to obtain the 

displacement distribution and shape of a cross-section of the 

borehole with a high accuracy. However, they did not treat 

this problem. Berard and Cornet (2003) suggested the method 

of correction of eccentric positioning of a borehole televiewer 

tool to obtain the shape of a borehole cross-section for 

estimating borehole breakout. In the CBDM, a non-linear 

programming for optimization with the non-linear least 

square method is introduced into the correction method to 

solve the eccentric position of the instrument. 

In this paper, the CBDM is introduced to measure rock 

stress change in laboratory and in-situ experiments. Firstly, 

the developed prototype instrument used in the CBDM is 

described, as well as the theory of the CBDM. In order to 

estimate the displacement distribution of a cross-section of 

the borehole precisely, both axes of the borehole and the 
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instrument must coincide with each other. However, it is 

difficult to coincide physically. Therefore, a theoretical 

procedure for coinciding with both axes of the borehole and 

the instrument, namely correcting eccentric positioning of the 

instrument, is introduced to the method. Then the estimation 

of the stress change which acted on the granite plate with a 

borehole is demonstrated in the laboratory experiment. 

Finally, applying the CBDM to measured stress change 

around an underground cavern during and after excavation, 

the changes of rock stress distribution around the cavern is 

shown. It makes clear that stress change of immediate the 

rock mass of the cavern can be estimated by the CBDM and 

that the CBDM is available for measuring rock stress change. 

 

2. OUTLINE OF CBDM 

2.1 Measurement of displacement on borehole wall and 

Instrument 

The rock mass around a borehole is elastically deformed 

corresponding to subjected rock stress. Based on this 

principle, a method was developed for easily and accurately 

measuring two-dimensional stress change in a plane 

perpendicular to the borehole axis. This method is the 

Cross-sectional Borehole Deformation Method (CBDM). The 

displacement of the borehole wall is measured by a 

non-contact typed sensor, namely a laser displacement sensor, 

which is inserted and rotated in the borehole as shown in 

Figure 1. Accordingly, the rigidity of the instrument becomes 

zero for the measurement, because the displacement of the 

borehole wall can be measured without touching the wall. 

Then the rock mass around the borehole is undisturbed due to 

measurement, such as the hydraulic fracturing method. 

In order to measure radial displacement of the wall in a 

cross-section of the borehole, a compact and accurate laser 

displacement sensor is used. The dimensions are 43mm×
40mm× 18mm, and the resolution is 0.1 m. A small 

stepping motor is adopted for rotation of the laser 

displacement sensor. The minimum angle of rotation step of 

the stepping motor is 0.1 degrees.  

(b) (c) (d) 

(a) 
 

① Laser displacement sensor 
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③ Window for laser beam 
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Figure 2. Schematic view of prototype instrument and devices for control of instrument; (a) prototype 

instrument, (b) control box, (c) PC and display, (d) example of display of program. 

Figure 1.  Principle of measuring displacement of 
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The prototype instrument for measurement and schematic 

view are shown in Figure 2. The tube of the instrument, 70 

mm in diameter and 670 mm in length, is aluminum. The 

instrument is fixed in a borehole using two air pistons. The 

laser displacement sensor is located near small windows 

which are covered by acrylic plates for waterproof, and 

rotated by the stepping motor set in a head of the instrument. 

The motor is controlled by a computer through a controller 

and a driver. On the other hand, the output from the laser 

displacement sensor is stored in a computer through an 

amplifier unit and a data logger. These are assembled into the 

control box as shown in Figure 2(b). The sensor and motor 

are linked by the cables of about 30m length (Obara et al. 

2012a). 

 

2.2 Principle of measurement 

The schematic view of a cross-section in a plane 

perpendicular to the borehole axis is shown in Figure 3. The 

borehole having a cross-section of perfectly circular is drilled 

within a rock mass. Its radius is defined by R. The 

homogeneous and isotropic rock mass is assumed to be 

infinite and elastic. The principal stress subjected at infinity is 

defined in the x-y coordinate system which is set on the 

borehole with the origin at its axis in Figure 4: 

 

{} = {x, y}                                (1) 

 

The axes in the coordinate system coincide with the principal 

directions.  

   The radial displacements due to each principal stress are 

described as: 

 

)2cos21)(1(

),2cos21)(1(

2

2











E

R
U

E

R
U

yy
R

xx
R

        (2) 

 

In general, the radial displacement UR is the vector sum of 

displacement UR 
x and UR 

y, which are generated 

corresponding to each principal stress (Jaegar & Cook 1979): 
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where H = R(1-2)/E, E is Young’s modulus and is 

Poisson’s ratio, then  is rotation angle with the positive x 

axis. The radius RR after deformation is represented: 

 

RR=R+UR                                      (4) 

 

In a measurement, the displacements and measured radii, 

number of n, are denoted by: 

 

{UR} = {UR1, UR2, …., URi, …., URn}                  (5) 

{RR} = {RR1, RR2, …., RRi, …., RRn} 

 

The coordinates of the measuring point i on the borehole wall 

are written in the X-Y coordinate system defined on the 

instrument with the origin at its axis in Figure 4 as follows: 

 

Xi = RRi cosYi = RRi sin(6) 

 

where  is the rotation angle with the positive X axis in 

Figure 4. The measured results schematically are shown in 

this figure. The plots represent measurement values, and the 

solid curve is approximately expressed by an ellipse with a 

center of (0, 0) in x-y and (b, d) in an X-Y coordinate system.  

The length of major and minor axes of the ellipse is 2a and 2c, 

respectively. In general, the center of the ellipse does not 

coincide with that of the borehole as shown in the figure. In 

the cases that the distance between origins of each center is 

very short, the equation of the ellipse in the x-y coordinate 

system may be written as: 

 
 

                               (7) 
 
Using the coordinate transformation law from the X-Y to x-y 

coordinate system represented by eq(8), the observation 

equations are obtained at each measurement point as eq(9).  
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drilled within rock mass, which is assumed to be 

infinite and elastic. 
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The most probable parameters of an ellipse, a, c, b, d, , are 

determined by applying a non-linear least square method to 

observation equations for measured values. When the axis of 

the instrument coincides with that of the borehole, the 

parameters b and d are equal to zero. 

The displacements on major and minor axes of the 

determined ellipse are: 

 

                                           (10) 

 

Accordingly, most probable principal stresses can be obtained 

in the x-y coordinate system as follows:  
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Then the stress components in the X-Y coordinate system are 

calculated by the stress transformation law. 

The stress estimated from eq(11) is not correct, because it 

is impossible to measure the radius of the borehole precisely 

just after boring (Obara et al., 2010). Therefore, the absolute 

stress state cannot be estimated. The stress determined by 

eq(11) is considered to be a temporal stress.  

The stress change can be estimated, using the temporal 

stress at more than two stages as follows. For example, the 

state of stress is changed with progress of construction of the 

underground opening. At the first stage, a borehole is drilled 

within a rock mass, and the cross-sectional shape of the 

borehole is measured at an early stage of excavation of an 

opening. Using the displacement, the temporal stress at the 

first stage can be determined. At the second stage, the shape 

at the same section of the borehole is measured again and the 

temporal stress is determined at an arbitrary stage during 

excavation. Then, the stress change is determined by the 

difference of temporal rock stress states determined at the 

first and second stages of excavation, assuming that rock is 

elasti. Thus, the stress change due to elapsed time or 

excavation can be estimated by measuring the cross-sectional 

shape at the same cross-section of one borehole repeatedly.  

Consequently, the temporal stress state {I}={X
I, Y

I, XY
I} 

is assumed at the first stage. The temporal stress {II}={X
II, 

Y
II, XY

II} is also assumed at the second stage. The stress 

change {} can be estimated by the following equation, 

using the estimated temporal stress state at two stages: 

 

{} = {X, Y, XY}={II}{I}            (12) 

 

3. THEORETICAL ANALYSIS OF INFLUENCE 

FACTORS ON MEASUREMENT RESULTS 

According to parameter H in eq(3), the estimated stress is 

a function of borehole radius, Young’s modulus, and 

Poisson’s ratio of rock. Eq(7) is the observation equation in 

cases that the distance between axes of the borehole and the 

instrument is very short. If that distance becomes longer, 

namely, by eccentric positioning of the instrument, the 

estimated stress is also influenced by the distance. In this 

chapter, the influence of borehole radius, Young’s modulus, 

and distance between both axes in the estimated result is 

discussed under a condition of =0.2, because that the 

influence of Poisson’s ratio is smaller, comparing with the 

above parameters. 

 

3.1 Borehole radius 

The three cases of principal stress state are assumed under 

condition of R=38mm and E=30GPa as follows; I) {I} = 

{x
I, y

I} = {5, 10}, II) {II} = {5, 15}, III) {III} = {5, 30} 

(unit: MPa). The distribution of displacements UR of a 

borehole wall is calculated in the case of R=38mm by eq(2). 

Then the radius distribution RR in eq(4) is calculated by eq(3). 

Assuming that the calculated RR is the measured one, the )3(),3( xyyx HRcHRa  
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Figure 5. Influence of borehole radius on estimation of 
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displacement of borehole wall, (b) estimated initial 

stress y, (c) estimated stress change y. 
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distribution of displacement can be calculated under a 

different radius as shown in Figure 5(a), in the cases that the 

axis of the borehole coincides with that of the instrument.  

All distributions of displacement in the case of a different 

radius have a period of  and the same amplitude. However, 

each magnitude is dependent on the assumed radius.  

Using these displacements, the most probable stress is 

estimated by the non-linear least square method as shown in 

Figure 5(b). The estimated stress y is represented with the 

assumed radius. The black circles in the figure represent the 

real stress value in the case of R=38mm. The stress increases 

with increasing radius. If the radius can be measured with a 

high accuracy, the initial stress is determined. However, it is 

impossible to measure borehole radius precisely. 

Consequently, initial stress cannot be estimated by the 

CBDM. 

Considering the stress change of stages I) to II), II) to III) 

and I) to III), the stress changes y are 5, 10 and 20MPa 

theoretically. The estimated stress change is shown in Figure 

5(c) with various radii. It is clear that the stress change is 

independent of borehole radius. The stress change can be 

estimated even if the radius is not measured with a high 

accuracy. 

The stress state is a temporary stress state, and the stress 

change is real stress. Accordingly, the CBDM is available for 

estimating stress change. 

 

3.2 Young’s modulus  

The distribution of displacement of a borehole wall is 

calculated by eq(3) under the condition of R=38mm and 

E=30GPa. Using these displacements, the most probable 

stress is estimated by the non-linear least square method.  

Figure 6(a) and (b) show estimated stress y and y with 

various Young’s moduli. Both stress and stress change are 

proportional to Young’s modulus. The degree of proportion is 

dependent on the magnitude of stress. The influence of 

Young’s modulus on measurement result in stress and stress 

change is almost the same in conventional stress 

measurement methods based on the theory of elasticity. 

Therefore, precise estimation of Young’s modulus is also 

important to estimate stress change by the CBDM. 

 

3.3 Installation position of instrument in a borehole 

In the measurement, the instrument is inserted into a 

borehole. The axis of the instrument does not usually coincide 

with that of the borehole, that is, the instrument is installed at 

an eccentric position to the center of a cross-section of the 

borehole. The coordinate systems are defined as shown in 

Figure 7. The X’-Y’ coordinate system is defined in the 

instrument, as its origin o’ is the axis of the instrument, then 

the X-Y and x-y coordinate systems are defined in the 

borehole, as its origin o is the axis of the borehole. The axes 

of X’ and X in the coordinate systems are parallel. The 

coordinates of the origin o are (X, Y) in the X’-Y’ 

coordinate system.  

Figure 8 shows the distributions of displacement of a 

borehole wall in a case that the axis of the borehole is located 

at X=0, ±0.04 and ±0.1mm with Y=0mm under the 

condition of R=38mm and E=30GPa. When the distance of 

both axes is zero, the distribution has a period of  and the 

most probable stress may be estimated by the non-linear least 

square method. However, with an increase in the distance, a 

period of 2is seen in the distribution.  

The distribution of the displacement uM is shown as 

opened plots in the case of X=0mm, Y = 0.1mm in Figure 

9. The distribution has a period of 2Applying the 

non-linear least square method to the distribution of 

placement, which is assumed to be the measured distribution 

uM, the approximated curve uA is obtained in Figure 9. The 

measured data was calculated under assumption of eccentric 

positioning of the instrument and zero in displacement at  

=0. Since the curve is incorrect, it is impossible to estimate 

the most probable stress by only the non-linear least square 

method using eq(7).  
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In order to resolve this problem, namely, to correct 

eccentric positioning of the instrument, a non-linear 

programming for optimization is introduced into the 

correction method. The error function f between the estimated 

displacements by the non-linear least square method and 

measured ones is defined as: 

 

 

                                        (13) 

 

 

where n is the number of data. An example of the error 

function is shown in Figure 10. The shape of that is 

monotonically decreasing function and unimodal function 

which has minimum value at the origin. Therefore, this error 

function can be minimized by a non-linear programming for 

optimization, moving the origin of the X-Y coordinate system.  

   The technique of golden section search is introduced in 

the non-linear programming for finding the minimum of the 

function. The technique derives its name from the fact that 

the algorithm maintains the function values for triples of 

points whose distances form a golden ratio. In the 

programming, firstly a certain Y0 is given, then the 

minimum of the function is found in the plane of Y’ =Y0 by 

golden section research and X0 is obtained at the same time. 

The optimized coordinate Y1 is obtained in the plane of X’ 

=X0 by golden section research. Then, the coordinate X1 is 

searched for in the plane of Y’ =Y1. This procedure is 

iterated until the coordinates converge on the constant value 

(X, Y). The condition of convergence is defined as: 

 

           (14) 

 

where i is the iteration number.  In the following analysis, || 

is equal to 10-5mm. After the analysis, we can obtain the 

temporary stress components on the X-Y and x-y coordinate 

system, as well as (X, Y).  

As examples, three theoretical distributions of 

displacement of a borehole wall on the X’-Y’ coordinate 

system are calculated in Figure 11 as a solid line under the 

condition that {} = {x, y} = {5, 15} (unit: MPa), 

R=38mm, E=30GPa and =0.2. The rotation angle is zero in 

Figure 11(a), (b) and 15 degrees in Figure 11(c). In these 

cases, the axis of the instrument coincides with that of the 

borehole. 

On the other hand, the distribution of displacement 

represented by the solid line is changed to the opened plots in 

the case that the distance between both origins of the 

coordinate systems is large as follows: 

 

Case A : (X, Y)=(-0.2, 0.0) ,  = 0 in Figure 11(a) 

Case B: (X, Y)=(0.0, -0.6) ,  = 0 in Figure 11(b) 

Case C: (X, Y)=(0.8, 0.4) ,  =15 degrees in Figure 11(c) 

 

The distributions of the plots begin to have a period of 2.  

The distribution in each case is perfectly different from the 

solid line in the case of a coincidence of both axes  

Assuming that these distributions are the measured ones, 

the most probable stress state is calculated on the X-Y and x-y 

coordinate system, using the developed no-linear 

programming with the non-linear least square method. The 

results are summarized in Table 1. The X and Y are 

described down to the third decimal place and coincide with 

the given condition of calculation. The constants b to d are 

those in eq(8). Both b and d are less than 10-4mm. This means 

that the origin of the X-Y coordinate system coincides with 

that of the X’-Y’ coordinate system and that the eccentric 

position of the instrument is perfectly corrected.  

Since the radius of the borehole and Young’s modulus are 

known in this calculation, the stress state is estimated 

precisely. However, the stress state is a temporary one in the 
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least square method, based on the measured distribution 

of displacement. 
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cases that the radius of a borehole is unknown. Its principal 

stress and principal direction is in agreement with the input 

data. Accordingly, it is concluded that the temporary stress 

state can be measured by the developed programming, and 

that stress change can be estimated by the CBDM. 

 

4. LABORATORY EXPERIMENT 

The granite plate of 400mm×400mm×47mm with a 

borehole having a radius of 37.9mm is vertically loaded by a 

material testing machine as shown in Figure 12. Young’s 

modulus and Poisson’s ratio of granite are 30 GPa and 0.2, 

respectively.  The X-Y coordinate system is defined on the 

plate.  The vertical stress SY is applied 3 MPa to 5 MPa, and 

SX is zero. The stress changes Y =2MP is estimated as the 

difference from the temporal stresses at two loading stages.  

The displacement of the borehole under the condition of 

SY = 3 and 5 MPa are shown in Figure 13. The closed plots 

represent the measured displacement. The opened plots are 

the corrected data for eccentric positioning of the instrument 

and the solid line is the approximated curve. The corrected 

data is in agreement with the approximated distribution.  

The temporal stress and stress change are estimated in the 

X-Y coordinate system. The results are summarized in Table 2. 
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Figure 11. Distribution of theoretical and measured 

displacement; (a) Case A, (b) Case B, (c) Case C. 

 
Table 1. Calculated results by non-linear programming. 

 

 Case A Case B Case C 

Geometry of approximated ellipse in mm  

X -0.200 0.000 0.800 

Y 0.000 -0.600 0.400 

a 37.999 38.000 38.000 

c 37.951 37.951 37.951 

b 7.4×10-6 -5.4×10-7 -6.9×10-6 

d 4.3×10-4 2.0×10-4 -8.2×10-6 

Principal stress in MPa and rotation angle in 

degrees 

 

x 4.995 4.995 4.994 

y 14.986 14.995 14.969 

 -6.8×10-4 1.1×10-4 15.035 
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Figure 13. Measured data, corrected data and 

approximated curve of displacement of borehole wall in 

the case that: (a) SY=3MPa and SX=0MPa, (b) SY=5MPa 

and SX=0MPa. 
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Figure 12. Instrument installed in a borehole drilled 

into andesite plate set up in a material testing machine. 
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The stress change of Y can be successfully estimated, 

though the stress components X and XY are slightly 

induced (Obara et al. 2012a). It is concluded that the CBDM 

is available for estimating stress change. 

 

5. APPLICATION TO IN-SITU MEASUREMENT 

5.1 Site description 

The plan view of the measurement site in Kamioka Mine 

is shown in Figure 14 (Obara et al. 2011b, 2012a, b). A 

cavern was excavated at a depth of 900m within gneiss. The 

Young’s modulus and Poisson’s ratio are 30GPa and 0.2, 

respectively.  The dimension of the cavern is 15m by 21m 

and 15m in height. A borehole with a length of 5m for 

measurement of stress change was drilled horizontally from 

the gallery to the cavern before the start of its excavation.  

The width of the rock between the gallery and the cavern is 

about 7m. The borehole for measurement was drilled in the 

wall. The four measuring points are located at depths of 1.0m, 

1.8m, 4.0m and 4.5m, as shown in Figure 15. The measuring 

points are determined from the condition of the recovered 

core. 

The excavation process is shown in Figure 16 in three 

dimensions. Firstly, the lower part of the cavern was 

excavated from access tunnel A. Then the upper part was 

excavated from access tunnel B. Finally, the middle part was 

excavated. The excavation method was blasting and its period 

was about six months for the whole of stages I to IX.  The 

measurements were performed at nine stages before, during, 

and after excavation.  

 

5.2 Measurement results 

The results at a depth of 4.0m are shown as an example. 

The measured and corrected displacements of the borehole 

wall at Stages V of the excavation are shown in Figure 17, 

assuming that the borehole radius is 37.85mm. The radius is 

not a real value but an expedient assumed one for calculating 

temporal stress. The solid line is approximation by the 

equation of the ellipse. The distributions of displacement in 

the measured results have a period of 2. However, applying 

both the non-linear least square method and non-linear 

programming for optimization to the measured results, the 

corrected data for eccentric positioning of the instrument 

changes to have a period of. The corrected data vary 

slightly, but represent a fairly good approximation. In 

Figure17(c), the cross-sectional shape in the plane 

perpendicular to the borehole axis is shown, adding 50 times 

displacement to the radius. The shape is represented by an 

ellipse. The principal direction of the absolute stress state can 

be confirmed from this shape, although its value cannot be 

estimated from the CBDM. 

Table2. Estimated temporal stress and stress change in the 

case that SY is changed from 3MPa to 5MPa. 

Estimated temporal stress  X  Y  XY

 In the case of S Y  = 3MPa 3.52 6.32 -0.41

 In the case of S Y  = 5MPa 3.45 8.03 -0.57

Stress change  X  Y  XY

 Applied stress change 0 2 0

 Estimated stress change -0.07 1.71 -0.16

Figure 16. Measurement stage for the excavation of the 

cavern: access tunnel A is linked to (II) of lower part and 

tunnel B is to (V) of upper part. 

Stage I: Before excavation 

Stage II: Excavation of center of lower part 

Stage III: During excavation of lower part 

Stage IV: After excavation of lower part 

Stage V: Excavation of center of upper part 

Stage VI: After excavation of upper part 

Stage VII: During excavation of middle part 

Stage VIII: Just after excavation of middle part 

Stage IX: Three months after completion of 

excavation 

Tunnel A side 

Tunnel B side 
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Figure 14. Location of borehole for measurement and 

cavern in the plan view of measurement site in Kamioka 

Mine. 
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Figure 15. Core of borehole for measurement and 

measurement points. 
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Figure 17. Measured and analyzed results: (a) measured data, (b) corrected data, (c) cross-sectional shape in the plane 

perpendicular to the borehole axis at Stage V; solid lines in (b) and (c) are approximations; deformation in (c) is described, 

adding 50 times displacement to radius. 
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Figure 19. Distribution of stress change along borehole axis: (a)X, (b) Y, (c) XY, (d) vertical cross section. 
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5.3 Change of stress distribution 

 

The stress change at the depth of 4.0m during the 

excavation is shown in Figure 18. Since the initial stress state 

is not measured in this location, the stress change is 

calculated to subtract each component of the temporal stress 

at Stage I from that at any stage respectively. The vertical 

stress change Y is zero until stage II, but increases at stage 

III, then reaches the maximum value at stage V. After that, the 

stress decreases gradually with the progress of excavation. 

The tendency of the horizontal stress change X is almost 

the same as that of Y. It is considered that the rock near the 

measuring point was damaged and became the loosened zone. 

However, as the change of all stress components is 

continuous, it is also considered that that damage did not 

happen suddenly. 

Finally, the distributions of stress change along the 

borehole axis at some stages are shown in Figure 19. The 

vertical cross-section along the borehole axis is in Figure 19 

(d). The width of the pillar between the gallery and the cavern 

is 7.0m. In shear stress change XY of Figure 19 (c), the 

stress change is relatively small along the borehole axis 

during excavation. This means that there is not very much 

change in principal direction with elapsed time and geometry 

of cavern. 

The vertical stress change Y in Figure 19 (b) is 

comparatively large. The stress change Y at a depth of 1.0m 

is small. As this point is near the gallery wall, the rock mass 

in this area is considered to be damaged. On the other hand, 

the stress change at a depth of 1.8m, 4.0m and 4.5m is large 

in early stages of the excavation. At a depth of 1.8m, the 

stress represents the maximum value at Stage IV, then it 

decreases to a half of the maximum value at Stage V. This 

value is maintained until Stage IX, which is completion of 

excavation. This means that the rock mass near a depth of 

1.8m was not damaged. On the other hand, the stresses at 

depths of 4.0m and 4.5m also represent the maximum value 

at Stage IV, then they decreases gradually with the advance of 

the excavation. At Stage IX, the stresses decrease to the stress 

level lower than that before excavation. It is considered that 

the rock mass near depth of 4.0 - 4.5m was damaged due to 

excavation. These trends can be seen in horizontal stress 

change X shown in Figure 19(a). However, the state of the 

damaged zone is not clear. Therefore, that state should be 

confirmed by other methods such as numerical methods. 

 

6. CONCLUSIONS 

The Cross-sectional Borehole Deformation Method 

(CBDM) for measurement of rock stress change was 

introduced. Firstly, the principle of measurement was 

described, as well as the non-contact typed instrument with a 

laser displacement sensor. Secondly, the factors which affect 

measurement result were investigated theoretically, then it 

was shown that the eccentric position of the instrument is the 

most significant factor. A non-linear programming for 

optimization with the non-linear least square method was 

introduced in order to correct the eccentric position of the 

instrument. The applicability of it was shown based on the 

results in the laboratory experiment. Finally, the successful 

application to measure stress change under the excavation of 

a cavern was demonstrated. From the results, it was 

concluded that the CBDM is available for measuring stress 

change. 
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