総説

精巣上体の発生・分化:遺伝子改変マウスを用いたアプローチ

奥野知世*,石坂駿行*,川畑遊星*,竹田直樹**,吉信公美子***,荒木喜美**,吉永一也****

Development and differentiation of the epididymis: an approach by using transgenic mice

Tomoyo Okuno*, Toshiyuki Ishizaka*, Yusei Kawabata*, Naoki Takeda**, Kumiko Yoshinobu***, Kimi Araki**, Kazuya Yoshinaga****

Key words: epididymis, wolffian duct, morphogenesis, differentiation, transgenic mice

受付日 2019 年 10 月 25 日 採択日 2019 年 11 月 18 日 *熊本大学大学院保健学教育部 検査技術科学コース **熊本大学生命資源研究・支援センター 疾患モデル分野 ***熊本大学生命資源研究・支援センター ゲノム機能分野 ****熊本大学大学院生命科学研究部 構造機能解析学講座 投稿責任者:吉永一也 kyoshina@kumamoto-u.ac.jp

I. はじめに

男性不妊症の患者数は我が国においても年々増加 傾向にあり、その発症機序の解明や検査・治療法の 開発が急務となっている。その主な原因として、精 巣に起因する造精機能(精子形成)障害をはじめ精 路通過障害や精巣上体機能異常など多岐にわたるが、 特定できるのはむしろ少なく、複数の原因(要因) が複雑に絡み合って男性不妊をもたらすことも分か ってきた。しかし、その基盤となる精路系器官とり わけ精巣上体の発生・分化を制御する分子機構はま だよくわかっていない。

精巣上体は、雌雄の形態と機能の違いが顕著に見 られるユニークな男性特有の器官であり、内部には 著しく迂曲した1本の精巣上体管がぎっしりとパッ キングされている(図1,図2A)。精巣で産生され る未熟な精子は、この管を輸送される過程で運動能 を獲得し、卵子との受精に必要な能力を備えていく ^{1,2,3}。このような精子の成熟や保護、濃縮、貯蔵な ど妊孕性に関わる機能は、胎生期から生後の発生・ 分化の過程で起る一連の形態学的変化と遺伝子発現 を経て可能となる。しかし、精巣上体は特定の疾患 の原因臓器ではなく、また個体の生命維持に直接関 与する臓器でもないこともあり、その発生(形態形 成)および分化のメカニズムを解明するための基礎 研究は少ない。

近年、精巣上体の形態や機能の異常を引き起こす 遺伝子改変マウスが次々と報告されている^{4,5)}。本稿 では、精巣上体の発生・分化を制御する分子機構を 理解するためだけでなく、男性不妊症モデル動物と しても有用可能な遺伝子改変マウスについて、筆者 らが得た最近の知見を含めて概説する。

Ⅱ. ウォルフ管/精巣上体管の発生と分化

精巣上体管は、胎生早期すなわちヒトの発生第4 週、マウスの胎齢9日に出現する中腎管(ウォルフ 管 Wolffian duct,以下 WD)に由来する^の。WD はそ の後(ヒト発生第8週、マウス胎齢13-14日)、精巣 より産生されるテストステロンの影響により、近位

図1 雄性生殖管(輸出細管、精巣上体管、精管)の発生を示す模式図:(A) マウス胎齢14日。ウォルフ管(WD)の 近位部から複数の中腎細管が伸びて精巣と連絡し、輸出細管となる。(B) マウス胎齢16~18日。WD の近位部は伸長・ 屈曲して波状の精巣上体管を形成し、WD の遠位部からは直線状の精管が形成される。(C) マウス胎齢19日~生後の 幼若期。精巣上体管は全長に亘って伸長・迂曲を繰り返し、圧縮される。精巣上体は最終的に、起始部、頭部、体部、 尾部の4領域が区分される。(Joseph et al.⁴)より一部改変)

部は伸長かつ迂曲して波状の精巣上体管を形成し、 遠位部は直線的な精管を形成する(図 1)。また、 WDの近位部からは複数の細管(中腎細管)が伸び て精巣と連絡し、輸出細管となる。なお、女性では WDは退化消失し、中腎傍管(ミュラー管)が発達 して卵管や子宮を形成する。

成熟した精巣上体管の全長は、ヒトで 6m、ラット で 3m、マウスで 1m にも達する。マウスでは、胎齢 14 日の WD が 1mm 程度なので、成熟期の精巣上体 には 1,000 倍以上に伸長した精巣上体管が収まるこ とになる。このため、精巣上体管は著しく迂曲する ので、切片標本ではさまざまな断面が多数観察され る (図 2A)。こうした精巣上体は、幼若期の分化過 程で 4 つの領域(起始部・頭部・体部・尾部)が区 画化され (図 1C)、各領域は特異な形態と機能をも つようになる。

精巣上体の発生(形態形成)と分化のプロセスは 便宜上、以下の3つの段階に分けられる。第一段階 は、(1)胎生早期、WDの原基を構成する未分化間 葉細胞から1本の真っ直ぐな上皮性のWDが形成さ れる過程(図1A)。次に、(2)胎生中期~幼若期、 WD/精巣上体管が広範な形態形成を受けて、伸長 かつ迂曲する過程(図1B)。最終段階は、(3)出生 後(幼若期~思春期)における精巣上体の分化すな わち、精巣上体管の区画化および管上皮の主細胞・ 明細胞・基底細胞への分化が起る過程である(図1C)。 表1に示すように、各段階でWD/精巣上体管の形 態異常を呈する遺伝子改変マウスが報告されている が^{4,5}、詳細はそれぞれの文献を参照されたい。

1. ウォルフ管の形成メカニズム

神経系の発生に重要な Pax2、Pax2/Pax8 および Gata3 の各遺伝子欠損マウスでは、WD の形成開始 期に異常が引き起こされて形成不全となった。この 結果から、各遺伝子産物は WD の初期形成誘導因子 であることが明らかとなった^{7,8,9)}。また、Lim1 およ び Emx2 は WD の伸長に必須であることがそれぞれ の遺伝子欠損マウスの解析から示された^{10,11,12)}。こ

図2 3週齢マウス精巣上体(頭部)断面の光学顕微鏡像:(A)野生型マウス(*Lgr4^{+/+}*)の精巣上体管は幼若期に著しく 伸長・迂曲した結果、管のさまざまな断面が多数観察される。(B)*Lgr4*変異マウス(*Lgr4^{Gt/Gt}*)の精巣上体は矮小化し、 精巣上体管は幼若期の伸長・迂曲が阻害された結果、その断面数が少ない。(ヘマトキシリン・エオジン染色)

れらの転写因子は、WD 原基を構成する間葉細胞が 上皮細胞へ分化する際に重要な役割を果たすと考え られるが、上皮ー間葉相互作用を制御する分子機構 は明らかにされていない。線維芽細胞増殖因子 FGF (Fibroblast growth factors)遺伝子群の Fgf8 と FGF の 受容体 Fgfr2 はそれぞれ WD 原基の間葉と上皮で発 現しているが、それぞれの欠損マウスの解析から、 Fgf8 は WD 近位部の形成に関与し、Fgfr2 は WD 遠 位部の維持に関与することが明らかとなった^{13,14)}。 WD の形成は腎臓の発生にも影響を及ぼすので、WD の初期形成過程に異常を示す変異マウスの多くは泌 尿器系の発生異常も伴っている。

2. ウォルフ管/精巣上体管の伸長と迂曲のメカニ ズム

WDの伸長と迂曲は、生後の精巣上体管において も継続する。こうした管の形態形成は、この時期の 精巣で産生されるアンドロゲンに依存することが古

くから知られている15-19)。村嶋らは、アンドロゲン の作用がWD上皮周囲の間葉細胞で発現するアンド ロゲン受容体を介することを組織特異的 Ar (Androgen receptor) 遺伝子欠損マウスの解析から明 らかにした¹⁰⁾。この作用にはFGFや上皮成長因子の 関与も示唆されているが21-23)、生体内における分子 機構はわかっていない。Tomaszewskiらは、WD近位 部の屈曲を制御する局所因子としてインヒビンとア クチビンのサブユニットが必須であることを遺伝子 欠損マウスの解析から明らかにした24)。多発性嚢胞 腎の原因遺伝子PKD1 (Polycystic kidney disease 1)の 欠損マウスでは、WDの迂曲が起こらず、上皮細胞 の増殖も減少していた25)。最近、さまざまな遺伝子 改変マウスを用いた薬剤等による阻害実験の結果か ら、Wnt/βカテニンシグナルがWD上皮の細胞増殖 を制御し、WDおよび精巣上体管の屈曲に重要であ ることが報告された^{26, 27)}。また、Wntシグナル伝達 を抑制するSfrp1/Sfrp2遺伝子のダブル欠損マウス、

遺伝子	変異マウスの表現型	文献
ウォルフ管(WD)形成の異常		
Pax2	WDの形成不全	7
Pax2/Pax8	WDの形成不全	8
Lim1	WDの形成不全	11
Gata3	WDの形成不全	9
Emx2	WD の退行	12
Fgf8	WD 近位部の退行	13
Fgfr1/2	WDの形成不全	13
Fgfr2	WD 遠位部の退行	14
ウォルフ管(WD)/精巣上体管の伸長または屈曲の異常		
Ar	WD の退行	16,17
Inhba	精巣上体管の屈曲の低形成	24
Sfrp1/2	WD 遠位部および精管の短縮	28
Vagl2	WD 遠位部および精管の短縮	28
Wnt5a	WD 遠位部および精管の短縮	28
Pkd1	精巣上体管の屈曲の低形成、輸出細管の拡張	25
出生後における精巣上体分化の異常		
PTEN	起始部の分化異常	35
Ros1	起始部の分化異常	34
Duspв	頭部および体部の拡大	37
Frs2	精巣上体の異常な形状	38
Ar	上皮細胞の分化異常	20
	起始部の欠如、上皮細胞の分化異常	40
	起始部の欠如、上皮細胞の分化異常	41
	小さな精巣上体	39
Dicer	上皮細胞の分化異常	42
miR-29a	低形成性精巣上体	44
Lgr4	輸出細管の閉塞	45
	短く拡張した単調な精巣上体管	46
SHP-1	精巣上体の区画化異常	36

表1 ウォルフ管/精巣上体管の発生・分化の形態異常を示す遺伝子改変マウス

(Murashima et al.⁵⁾より一部改変)

*Wnt5a*遺伝子欠損マウスおよび*Vagl2*変異マウスは、 いずれもWD遠位部および生後における精管の短縮 を示した²⁸⁾。

一方、平島らは数理モデル解析から、精巣上体管 の形態形成(迂曲または座曲)は管上皮の細胞増殖 と管周囲組織の機械的抵抗に依存することを示して いる²⁹⁾。しかし、この細胞の力学的応答を支える分 子の実体はわかっていない。

3. 生後における精巣上体の分化(区画化と管上皮 細胞の分化)のメカニズム

マウスの精巣上体では4つの領域が区画化される

が、各領域は特定のmRNA やタンパク質の発現およ び細胞化学的特性を有する 30,31)。輸出細管の結紮実 験から、精巣上体の区画化障害や管上皮の分化障害 は、雄性不妊を招くことが知られている 32,33)。受容 体型チロシンキナーゼ Rosl や Cowden 症候群の 原因遺伝子 PTEN (Phosphatase and tensin homolog deleted from chromosome 10) の欠損マウスおよびチ ロシンホスファターゼ SHP-1 (Src homology region 2 domain-containing phosphatase-1) 変異マウスでは、精 巣上体の起始部の分化阻害が起るため、精巣上体に おける精子成熟が障害されて不妊となる34-36)。また、 MAPK (Mitogen-activated protein kinase) シグナル伝 達調節因子 Dusp6 や線維芽細胞成長因子受容体 FRS2 (Fibroblast growth factor receptor substrate 2) \mathcal{O} 各遺伝子欠損マウスの解析から、両遺伝子が精巣上 体の頭部および体部における上皮細胞の増殖と生存 に必要であることが明らかにされた^{37,38)}。アンドロ ゲン受容体 Ar 遺伝子の欠損マウスでは、精巣上体の 区画化および管上皮の分化が障害されるため、不妊 となる^{20,39-41)}。こうした区画化や上皮分化の調節は、 microRNA のプロセシングに必要な Dicerl 遺伝子が アンドロゲンの作用を介して関与することが示唆さ れている⁴²⁻⁴⁴⁾。

Wnt シグナル制御関連分泌タンパク質 R-spondin の 受 容 体 LGR4 (Leucine-rich repeat-containing G-protein-coupled receptor 4)の欠損マウス (*Lgr4*^{-/-}) および遺伝子トラップ法を用いて *Lgr4*の発現を著 しく低下させた変異マウス (*Lgr4*^{GuGI})は、それぞれ 輸出細管の閉塞や精巣上体管の低形成(図 2)を伴 った雄性不妊を示した^{45,46)}。これらの結果から、*Lgr4* は精巣上体管の形態形成や上皮の区画化に重要な役 割を果たしている可能性が示された⁴⁶⁾。しかし、そ の分子機構はわかっていない。筆者らは最近、胎生 期~幼若期の*Lgr4*^{GuGI}マウスにおいて、WD/精巣上 体管上皮および周囲間葉細胞の増殖障害が引き起こ されていることを確認している(未発表)。

囊胞性線維症の原因遺伝子 CFTR (Cystic fibrosis

transmembrane conductance regulator) は精巣上体管 上皮に発現しており、その欠損マウスは不妊の症状 を示すが、精路の形態異常は認められていない^{47,48}。 一方、この遺伝子変異はヒトで精巣上体の形態異常 や先天性両側精管欠損を起こす結果、男性不妊とな る⁴⁹⁻⁵¹。

Ⅲ. おわりに

以上、本稿で紹介した主に遺伝子改変マウスを用 いた精力的な基礎研究により、精巣上体の発生・分 化を制御する分子機構の一端が次第に明らかになっ てきた。この全体像を理解するためには、今後も上 皮-間葉相互作用の視点から、精巣上体をはじめ精 路系器官で発現する遺伝子/分子の生体内における 機能解析を進める必要がある。

マウスの遺伝子異常が、ヒトの生殖能力に影響を 及ぼすかどうかは不明である。しかし、遺伝子改変 マウスを用いた精路系の発生・分化の研究は、リソ ースとして蓄積された樹立済みの系統を有効利用し つつ、さらに最新のゲノム編集技術を駆使して男性 不妊症モデル動物のさらなる開発に繋がることが期 待される。

精巣上体は管腔構造を有する臓器の代表例である。 こうした器官形成の制御機構に関する基礎研究は、 ヒトの先天異常やさまざまな臓器の上皮の形態形成 異常を伴う疾患の原因解明にも繋がる。今後、生体 内分子の活性動態を明らかにするための高速ライブ イメージング顕微鏡を利用した実験系の開発などに より、器官形成に関与する機能分子の新たな制御機 構への関与と機能解明が進展することが期待される。

謝 辞

本稿で紹介した研究の一部は JSPS 科研費 JP17K08493の助成を受けたものです。

参考文献

- Bedford, J.M.: Maturation, transport and fate of spermatozoa in the epididymis. In *Handbook of physiology*. Greep, R.O., Astwood, E.B. (eds) Vol.
 5, pp. 303-317, American Physiological Society, Washington D.C., 1975.
- Cooper, T.J.: Role of the epididymis in mediating changes in the male gamete during maturation. Adv Exp Med Biol, 377: 87-101, 1995.
- 吉永一也:受精能賦与と受精. In:永遠の不死, 精子形成細胞の生物学(小路武彦 編著) pp. 83-96, サイエンス社,東京, 2009.
- Joseph, A., et al: Development and morphogenesis of the Wolffian/Epididymal Duct, More Twists and Turns. Dev Biol, 325: 6-14, 2009.
- Murashima, A., et al: Understanding normal and abnormal development of the Wolffian/epididymal duct by using transgenic mice. Asian J Androl, 17: 749-755, 2015.
- Rodriguez, C.M., et al: The development of the epididymis. In: The Epididymis. From Molecules to Clinical Practice. Robaire B., Hinton B.T. (eds) pp. 251-267, Kluwer Academic/Plenum Publishers, New York, 2002.
- Torres, M., et al: Pax-2 controls multiple steps of urogenital development. Development, 121: 4057-4065, 1995.
- Bouchard, M., et al: Nephric lineage specification by Pax2 and Pax8. Genes Dev, 16: 2958-2970, 2002.
- Grote, D., et al: Pax2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development, 133: 53-61, 2006.
- Pedersen, A., et al: Lim 1 is required for nephric duct extension and ureteric bud morphogenesis. Dev Biol, 288: 571-581, 2005.
- 11) Kobayashi, A., et al: Requirement of Lim1 for female reproductive tract development. Development, 131: 539-549, 2004.

- Miyamoto, N., et al: Defects of urogenital development in mice lacking Emx2. Development, 124: 1653-1664, 1997.
- 13) Kitagaki, J., et al: FGF8 is essential for formation of the ductal system in the male reproductive tract. Development, 138: 5369-5378, 2011.
- Okazawa, M., et al: Region-specific regulation of cell proliferation by FGF receptor signaling during the Wolffian duct development. Dev Biol, 400: 139-147, 2015.
- Jost, A.: Recherches sur la differenciation sexuelle de l'embryon de Lapin. Arch Anat Microsc Morphol Exp, 36: 151-315, 1947.
- Lyon, M.F., et al: X-linked gene for testicular feminization in the mouse. Nature, 227: 1217-1219, 1970.
- Matsumoto, T., et al: Androgen receptor functions from reverse genetic models. J Steroid Biochem Mol Biol, 85: 95-99, 2003.
- Welsh, M., et al: New insights into the role of androgens in Wolffian duct stabilization in male and female rodents. Endocrinology, 150: 2472-2480, 2009.
- Jost, A.: Problems of fetal endocrinology: the gonadal and hypophyseal hormones. Recent Prog Horm Res, 8: 379-418, 1953.
- Murashima, A., et al: Essential roles of androgen signaling in Wolffian duct stabilization and epididymal cell differentiation. Endocrinology, 152: 1640-1651, 2011.
- Donjacour, A.A., et al: FGF-10 plays an essential role in the growth of the fetal prostate. Dev Biol, 261: 39-54, 2003.
- 22) Gupta, C.: The role of epidermal growth factor receptor (EGFR) in male reproductive tract differentiation: stimulation of EGFR expression and inhibition of Wolffian duct differentiation with anti-EGFR antibody. Endocrinology, 137: 905-910, 1996.
- 23) Gupta, C., et al: The role of EGF in testosterone-induced reproductive tract

differentiation. Dev Biol, 146: 106-116, 1991.

- 24) Tomaszewski, J., et al: Essential roles of inhibin beta A in mouse epididymal coiling. Proc Natl Acad Sci USA, 104: 11322-11327, 2007.
- 25) Nie, X., et al: Pkd1 is required for male reproductive tract development. Mech Dev, 130: 567-576, 2013.
- 26) Kumar, M., et al: Epithelial Wnt/βcatenin signalling is essential for epididymal coiling. Dev Biol, 412: 234-249, 2016.
- 27) Kumar, M., et al: Canonical Wnt/β-catenin signaling regulates postnatal mouse epididymal development but does not affect epithelial cell differentiation. Endocrinology, 158: 4286-4299, 2017.
- Warr, N., et al: Sfrp1 and Sfrp2 are required for normal male sexual development in mice. Dev Biol, 326: 273-284, 2009.
- 29) Hirashima, T.: Pattern formation of an epithelial tubule by mechanical instability during epididymal development. Cell Rep, 9: 866-873, 2014.
- Johnston, D.S., et al: The mouse epididymal transcriptome: transcriptional profiling of segmental gene expression in the epididymis. Biol Reprod, 73: 404-413, 2005.
- Abou-Haila, A., et al: Regional differences of the proximal part of mouse epididymis: morphological and histochemical characterization. Anat Rec, 209: 197-208, 1984.
- 32) Turner, T.T., et al: p53 independent, region-specific epithelial apoptosis is induced in the rat epididymis by deprivation of luminal factors. Mol Reprod Dev, 53: 188-197, 1999.
- Xu, B., et al: Testicular lumicrine factors regulate ERK, STAT, and NFKB pathways in the initial segment of the rat epididymis to prevent apoptosis. Biol Reprod, 84: 1282-1291, 2011.
- 34) Sonnenberg-Riethmacher, E., et al: The c-ros tyrosine kinase receptor controls regionalization and differentiation of epithelial cells in the epididymis. Genes Dev. 10: 1184-1193, 1996.

- 35) Xu, B., et al: PTEN signaling through RAF1 proto-oncogene serine/threonine kinase (RAF1)/ERK in the epididymis is essential for male fertility. Proc Natl Acad Sci USA., 111: 18643-18648, 2014.
- 36) Keilhack, H., et al: Negative regulation of Ros receptor tyrosine kinase signaling. An epithelial function of the SH2 domain protein tyrosine phosphatase SHP-1. J Cell Biol, 152: 325-334, 2001.
- 37) Xu, B., et al: p-MAPK1/3 and DUSP6 regulate epididymal cell proliferation and survival in a region-specific manner in mice. Biol Reprod, 83: 807-817, 2010.
- 38) Xu, B., et al: The role of fibroblast growth factor receptor substrate 2 (FRS2) in the regulation of two activity levels of the components of the extracellular signal-regulated kinase (ERK) pathway in the mouse epididymis. Biol Reprod, 89: 1-13, 2013.
- 39) Simanainen, U., et al: Severe subfertility in mice with androgen receptor inactivation in sex accessory organs but not in testis. Endocrinology, 149: 3330-3338, 2008.
- 40) Krutskikh, A., et al: Targeted inactivation of the androgen receptor gene in murine proximal epididymis causes epithelial hypotrophy and obstructive azoospermia. Endocrinology, 152: 689-696, 2011.
- O'Hara, L., et al: Androgen receptor expression in the caput epididymal epithelium is essential for development of the initial segment and epididymal spermatozoa transit. Endocrinology, 152: 718-729, 2011.
- 42) Bjorkgren, I., et al: Dicer1 ablation in the mouse epididymis causes dedifferentiation of the epithelium and imbalance in sex steroid signaling. PLoS One, 7: e38457, 2012.
- 43) Ma, W., et al: MicroRNA-29a inhibited epididymal epithelial cell proliferation by targeting nuclear autoantigenic sperm protein (NASP). J Biol Chem,

287: 10189-10199, 2012.

- 44) Ma, W., et al: An androgen receptor-microrna-29a regulatory circuitry in mouse epididymis. J Biol Chem, 288: 29369-29381, 2013.
- 45) Mendive, F., et al: Defective postnatal development of the male reproductive tract in LGR4 knockout mice. Dev Biol, 290: 421-434, 2006.
- 46) Hoshii, T., et al: LGR4 regulates the postnatal development and integrity of male reproductive tracts in mice. Biol Reprod, 76: 303-313, 2007.
- 47) Reynaert, I, et al: Morphological changes in the vas deferens and expression of the cystic fibrosis transmembrane conductance regulator (CFTR) in control, deltaF508 and knock-out CFTR mice during postnatal life. Mol Reprod Dev, 55: 125-135, 2000.

- 48) Xu, W.M., et al: Cystic fibrosis transmembrane conductance regulator is vital to sperm fertilizing capacity and male fertility. Proc Natl Acad Sci USA, 104: 9816-9821, 2007.
- 49) Claustres, M.: Molecular pathology of the CFTR locus in male infertility. Reprod Biomed Online, 10: 14-41, 2005.
- 50) Radpour, R., et al: Genetic investigations of CFTR mutations in congenital absence of vas deferens, uterus, and vagina as a cause of infertility. J Androl, 29: 506-513, 2008.
- 51) Ruan, Y.C., et al: CFTR interacts with ZO-1 to regulate tight junction assembly and epithelial differentiation through the ZONAB pathway. J Cell Sci, 127: 4396-4408, 2014.