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ABSTRACT 

Halenaquinone was isolated from the marine sponge Petrosia alfiani as an inhibitor of 

osteoclastogenic differentiation of murine RAW264 cells. It inhibited the RANKL 

(receptor activator of nuclear factor-kB ligand)-induced upregulation of TRAP 

(tartrate-resistant acid phosphatase) activity as well as the formation of multinuclear 

osteoclasts. In addition, halenaquinone substantially suppressed RANKL-induced IkB 

degradation and Akt phosphorylation. Thus, these results suggest that halenaquinone 

inhibits RANKL-induced osteoclastogenesis at least by suppressing the NF-kB and Akt 

signaling pathways. 
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   Bone homeostasis is regulated by the balance between bone formation by 

osteoblasts and bone resorption by osteoclasts.1 Osteoclasts were previously shown to 

differentiate from a monocyte/macrophage lineage when stimulated with receptor 

activator of nuclear factor-kB ligand (RANKL).1-3 RANKL stimuli are known to 

activate several downstream signaling pathways such as the NF-kB and MAPK 

signaling pathways, which upregulates the expression of osteoclast-specific genes 

including those encoding tartrate-resistant acid phosphatase (TRAP) and enzymes 

involved in cell fusion. Since the deregulation of osteoclast functions has been 

associated with several diseases including osteoporosis and bone-metastasis, 

considerable and widespread attention has been focused on compounds that affect 

osteoclastogenesis and the functions of osteoclasts for the treatment of osteoclast-related 

diseases.4,5 In the present study, we isolated halenaquinone6 (1) (Fig. 1) from the marine 

sponge Petrosia alfiani as an inhibitor of osteoclastogenic differentiation of murine 

RAW264 cells. 

   Screening was performed by measuring the RANKL-induced upregulation of TRAP 

activity in RAW264 cells.7 EtOAc- and water-soluble fractions derived from the EtOH 

extracts of 250 marine sponges and marine-derived fungi were subjected to screening. 

One of the hits was obtained from the EtOAc-soluble fraction prepared from the EtOH 
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extract of the marine sponge P. alfiani,8 which was collected in Indonesia in December 

2006. This sponge (400 g, wet weight) was soaked in EtOH immediately after being 

collected. The extract was concentrated and the residual aqueous layer was extracted 

with EtOAc and then n-BuOH. Purification of an inhibitor of osteoclastogenesis from 

the EtOAc- and n-BuOH-soluble fractions by SiO2 column chromatography afforded 1 

(35.6 mg).8 

Halenaquinone (1) completely inhibited the RANKL-induced upregulation of TRAP 

activity in RAW264 cells at a concentration of 20 µM (Fig. 2A).7 The IC50 value of 1 

was 2 µM. We next determined whether 1 suppressed the formation of multinuclear 

osteoclasts.9 The RANKL stimulation induced the differentiation of RAW264 cells and 

formation of TRAP-positive multinuclear osteoclasts (Fig. 2B (upper panel) and C), 

whereas the presence of 1 at a concentration of 20 µM clearly decreased the formation 

of these cells (Fig. 2B (lower panel) and C). Based on these results, we concluded that 1 

inhibited RANKL-induced osteoclastogenesis. 

Since its discovery,6 1 has been reported to exhibit inhibitory activities against 

several enzymes, such as a virus protein tyrosine kinase (v-Src),10 phosphoinositide 

3-kinase (PI3K),11 Cdc25B phosphatase,12 RAD51 (homologous-paring activity),13 

phospholipase A2,14 and farnesyltransferase,14 and is also cytotoxic.15 We have been 
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searching for proteasome inhibitors from marine sources16 and demonstrated that 1 

inhibited the chymotrypsin-like activity of the proteasome17 with an IC50 value of 0.6 

µM.18 

Since recent studies reported that several proteasome inhibitors inhibited 

osteoclastogenesis,19-22 we next determined whether 1 could inhibit the 

RANKL-induced degradation of IkB in the NF-kB signaling pathway, which induces 

osteoclastogenesis. IkB has been shown to sequestrate NF-kB in the cytoplasm and, 

upon the activation of upstream signaling regulators, IkB is degraded by the proteasome, 

leading to the nuclear entrance of NF-kB and its involvement in the activation of 

transcription.23 When RAW264 cells were pretreated with 20 µM 1 for 2 h followed by 

the stimulation with RANKL, the degradation of IkB24 15 min after the RANKL 

treatment was suppressed by 1 (Fig. 3A). At a higher concentration, 1 also slightly 

inhibited the RANKL-induced degradation of IkB (Fig. 3B). On the other hand, the 

finding that PI3K and its downstream Akt kinase are involved in osteoclastogenesis,25 

together with the above study on the inhibition of PI3K by 1,11 led us to assume that 1 

may affect osteoclastogenesis by inhibiting the PI3K-Akt signaling pathway. Akt 

phosphorylation24 was also shown to be suppressed to some extent by 1 (Fig. 3A). 

Taken together, these findings indicated that 1 may have an inhibitory effect on 
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RANKL-induced osteoclastogenesis at least via its suppression of the NF-kB and Akt 

signaling pathways. Since the inhibitory activities of 1 against the degradation of IkB 

and phosphorylation of Akt appear to be weak, it can be inferred that 1 inhibits other 

proteins as targets. Therefore, further studies are needed to identify these proteins. In 

conclusion, this is the first study to describe the inhibitory effects of 1 on 

osteoclastogenesis. 
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Figure 1. Structure of 1. 
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Figure 2. Inhibitory effects of 1 on RANKL-induced osteoclastogenesis. 
(A) RAW264 cells were treated with RANKL at the indicated concentrations in the 
presence or absence of 20 µM 1 and allowed to differentiate for 4 d. TRAP activity was 
measured as the absorbance at 405 nm. (B) RAW264 cells were allowed to differentiate 
by the treatment with RANKL (50 ng/mL) in the presence or absence of 20 µM 1 for 4 
d and were then stained with TRAP-staining solution. TRAP-positive cells stained red. 
(C) The TRAP-positive multinuclear cells (nuclei ≥ 3) in (B) were counted. 

 

 

 

 

 

 

 

 

 

Figure 3. Inhibitory effects of 1 on RANKL-induced IkB degradation and Akt 
phosphorylation. 
(A) RAW264 cells were pretreated with or without 20 µM 1 for 2 h and were then 
stimulated with RANKL (250 ng/mL). Cell extracts were prepared at the indicated 
times after the RANKL treatment and subjected to western blotting with the indicated 
antibodies (tubulin, control). P-Akt, phosphorylated Akt. (B) The 1-mediated inhibition 
of the degradation of IkB at various concentrations was measured 15 min after the 
RANKL treatment by western blotting. 


