総説

電子線治療の現状と今後の展望

南竹杏梨*,村上龍次**,下東吉信***

Present status and future prospects of electron beam therapy

Anri Minamitake*, Ryuji Murakami**, Yoshinobu Shimohigashi***

Key words: electron beam therapy, Monte Carlo method, off axis ratio (OAR), percentage depth dose (PDD), radiation treatment planning system (RTPS)

受付日 2020年11月1日 採択日 2020年12月21日 *熊本大学大学院保健学教育部 放射線技術科学コース **熊本大学大学院生命科学研究部 医用放射線科学講座 ***熊本大学病院 医療技術部 診療放射線技術部門 投稿責任者:村上龍次 murakami@kumamoto-u.ac.jp

I. はじめに

高エネルギー電子線を用いた放射線治療は 1950 年代のベータトロンに始まった.現在,リニアック (直線加速器)による電子線が悪性腫瘍の治療に利 用されている.質量が最も小さな荷電粒子である電 子線はX線とは全く異なる挙動を示し,治療計画や 線量計測も全く異なる.一般的な放射線治療におい て,電子線の使用頻度はX線と比較して少なく,電 子線治療に関する検討や報告は散見されるのみで ある.本稿では電子線に注目し,物理特性,線量計 測,線量処方や治療計画について,X線治療との比 較を概説し,電子線治療における今後の展望につい て考察する.

Ⅱ. 放射線の種類と特性

1. 放射線治療に使用される放射線の種類

放射線治療で使用されている主な放射線には,光 子線(X線,γ線),電子線,β線,重粒子線(中性 子線,陽子線,炭素イオン線)などがある.これら の放射線は生体内物質を電離・励起する能力を持つ 電離放射線である¹⁾.電離放射線は直接電離放射線 と間接電離放射線に分類される(表1).前者はそれ 自身で直接的に電離を生じ,後者は二次電子によっ て間接的に電離を引き起こす²⁾.電子線は前者の直 接電離放射線に分類される.

2. 高エネルギーX線および電子線の発生

電子銃から発せられた電子は加速管でマイクロ 波により加速され、270°偏向電磁石(bending magnet)により垂直方向ヘビームが曲げられる.X 線照射を行う際は、ターゲットに電子を照射するこ とによって発生する制動放射を利用し、電子線の場

粒子線	荷電粒子線	直接電離放射線	電子線, β線, 陽子線, 炭素イオン線
	非荷電粒子線	明拉雷就步时约	中性子線
電磁波		间按电阻次剂称	Χ線, γ線

表1 電離放射線の種類

表2 放射線と物質の相互作用 4)

	放射線	エネルギー付与	原子との相互作用
X線 電子線	X線	散乱	コンプトン効果
			干渉性散乱:トムソン散乱,レイリー散乱
			光電効果
		吸収	電子対生成
			光核反応
		#6.11	弹性散乱*
	電子線	FX BL	非弾性散乱(衝突損失):電離,励起
		放射	制動放射(放射損失)

*エネルギー付与を伴わない。

合は、スキャッタリングフォイル (scattering foil) によって散乱させ、連続スペクトルを利用する.

発生するX線エネルギーは電子の加速電圧 MV で 表示され、X線治療には 4~18 MV のエネルギーが 使用される.一方,電子線は高速に加速した電子を そのまま利用し、加速エネルギーMeV であらわす. 電子線治療では 4~20 MeV のエネルギーが使用され る³⁾.

Ⅲ. 放射線と物質の相互作用

1. X線と物質の相互作用

X線は通過する物質中の原子と種々の相互作用 を生じる(表2).原子核,軌道電子あるいは自由電 子との反応であり,光電効果,コンプトン効果,電 子対生成が特に重要である(図1).光電効果では、 入射するX線エネルギーのほぼ全てが二次電子の 運動エネルギーに転移され、X線は消滅する.二次 電子は周囲の物質を電離・励起しながら、相互作用 点の近傍で吸収される(光電吸収).光電効果は低エ ネルギー(10~100 keV)の場合に原子番号の3~4 乗に比例して発生確率が増加する 4-6). コンプトン 効果では、二次電子(コンプトン電子)と散乱線を 生じ、コンプトン電子の飛程はその運動エネルギー に依存し、最終的に吸収(コンプトン吸収)される. 100 keV~数 MeV において、コンプトン効果の発生 確率は電子密度に依存し、原子番号には依存しない. 数 MeV 以上では、原子番号に比例して電子対生成が

増加する.カルシウム(Ca:原子番号20)よりも小 さな原子番号を主要元素とする体内組織において, 放射線治療に用いる高エネルギーX線域ではコン プトン効果が最も重要な相互作用である⁷⁾.なお, 画像診断技術を含め臨床に用いるX線のエネルギ ー領域において,トムソン散乱や光核反応などの発 生確率は低く,問題となることは少ない⁸⁾.

直接電離放射線である電子線とは異なり,電荷 をもたないX線では,荷電粒子(電子)のように 物質中を進むにつれて直接エネルギー損失を起こ すことはなく,光電効果,コンプトン散乱,電子 対生成などの過程によりエネルギーを電子に与え る.つまりX線と物質の相互作用では,二次電子 へのエネルギー転移を考慮する質量エネルギー転 移係数によって定義される^{9,10}.

2. 電子線と物質の相互作用

物質には原子核 (プラス) や軌道電子 (マイナス) の電気的な力 (クーロン力) が常に働いている.電 子はマイナスの電荷を有するため,電子線と物質は 直接相互作用を起こす.電子線は原子核との弾性散 乱,軌道電子との非弾性散乱,あるいは制動放射に よりエネルギーを失い,やがて止まる(表 2).なお, チェレンコフ光の放出によるエネルギー損失はわ ずかであり,問題となることは少ない¹¹⁾.

電離や励起によって電子線がエネルギーを失う ことを衝突損失という.電子線と軌道電子の質量は 等しいため,衝突を繰り返すごとに電子線の運動方

図1 X線エネルギーと物質の原子番号による相互作用の分類

向は曲げられ、ジグザグに進んでいく.また、原子 核のクーロン力によって電子線の方向が大きく曲 げられ,電子線が持つ運動エネルギーの一部を制動 放射線として放出し、エネルギーを失うことを放射 損失という. 衝突損失は物質の原子番号 Z に比例し て増大し、放射損失は電子線エネルギーE と原子番 号Zの2乗に比例する.電子線のエネルギーが増大 すると放射損失の割合も増大するため,放射線治療 に用いる高エネルギー電子線では制動放射による エネルギー損失を考慮しなければならない¹²⁾. エネ ルギー損失過程で,荷電粒子が物質中を通過すると きの単位長さ (dx [cm]) あたりに失う平均エネルギ ー (-dE [MeV]) を阻止能 (-dE/dx [MeV/cm]) と いう. 衝突損失によるものを衝突阻止能 Scol, 放射 損失によるものを放射阻止能 Srad と呼び, 全阻止能 (S=S_{col}+S_{rad})となる. 電子線は物質中で阻止能に 応じたエネルギー損失を繰り返しながら止まる.物 質の種類や,電子線のエネルギーに依存し,阻止能 を密度で割ったものを質量阻止能 [MeV・cm²/g] と 呼ぶ.

3. 電子線のビームデータ

線量計測で計測される線量は,絶対線量と相対線 量の2つに分類される.絶対線量は,リニアックの モニタ線量計の校正および患者の治療計画の線量

検証に用いられ,吸収線量 [Gy] で表される.電子 線の吸収線量測定では、測定点における正確な水/ 空気の平均制限質量衝突阻止能比とフルエンス(球 体断面積当たりに入射する粒子数)が重要である¹³⁾. 阻止能比は電子線のエネルギーと媒質に依存する 関数である.実際には、人体での直接計測は困難で あり、人体を水等価と仮定する.電子線の線量計測 では、電離箱線量計(電子線エネルギー E<10 MeV では平行平板形, E≥10 MeV では平行平板形または ファーマ形)を用いて空気中の電離量を測定し、そ の電離量に ₩値(1イオン対を生成するために必要 なエネルギー)を乗ずることで電離量から電離箱の 空洞空気吸収線量に変換する.次に,空気を水に置 き換えるために、水に付与されるエネルギーを水/ 空気の質量衝突阻止能比で変換し、水の吸収線量を 求める¹⁴⁾. 電子線の吸収線量測定では,線質指標(線 量半価深 R₅₀) によって水/空気の平均制限質量衝突 阻止能比が得られる.

相対線量には深さ方向の線量分布である深部量 百分率(percentage depth dose: PDD),横方向の 線量分布である軸外線量比(off axis ratio: OAR) が含まれ、3次元線量分布を作成するために治療計 画装置へ入力する¹⁵⁾. PDDとは、ビーム軸上におけ る最大線量深 d_{max}の吸収線量(最大線量 D_{max})に対 する任意の深さの吸収線量の百分率である. OAR は

図 2 4, 6, 9, 12, 15 MeV 電子線における深部量百分率

同一深部におけるビーム中心軸の吸収線量に対す る軸外点の吸収線量の比で定義される.使用する線 量計の種類は用途によって異なるが,一般に電離箱, フィルム,固体線量計の3種類が使用される.

電子線は直接電離放射線であるため、媒質中を進 むにつれ、エネルギーを失う.よって、電子線の平 均エネルギーは媒質中の深さに依存して低下する ため、水/空気の質量衝突阻止能比の変化を考慮し なければならない.先ず、深部電離量百分率 (percentage depth ionization: PDI)を計測する. そして各深さにおける水/空気の平均制限質量衝突 阻止能比と擾乱補正係数(壁補正係数 P_{wall},空洞補 正係数 P_{cav},変位補正係数 P_{dis},中心電極補正係数 P_{cel})の変化を補正し,PDD に換算する(図 2).しか し、実際には水/空気の平均制限質量衝突阻止能比 のみを補正し、補正が困難な擾乱補正係数は省略す る場合が多い¹⁶.

電子線のPDDにもX線のようにビルドアップ領域 を認めるが、その発生機序は異なる.X線ではコン プトン散乱による二次電子の飛程に沿って発生す るが、電子線では原子とのクーロン力による散乱が 原因である.入射する電子線エネルギーが低い場合、 入射直後から電子はジグザグに進む.単位深さ当た りの電子フルエンスは、直進するより側方に散乱す る電子が多く、浅い領域にビルドアップ領域を生じる.入射エネルギーが低いほど散乱確率が高く、ビルドアップは急崚となる.逆に、エネルギーが高いほど電子線は直進し、表面と d_{max}の線量差が少なくなり、d_{max}および最大飛程 R_{max}は深く、深部線量の減少も穏やかになる(図2)^{17.18)}.

電子線はエネルギーによって到達できる距離(飛 程)が決まっており、それ以上の深部領域には到達 しない.その深部線量分布形状の特性から、皮膚表 面から5 cm 程度までの表在性の病変に対し使用さ れることが多い.d_{max}を超える深さにおいて PDD が 90%となる深さ R₉₀、80%となる深さ R₈₀、PDD の急勾 配の直線(電子の散乱と連続的なエネルギーの減少) に対して、制動放射成分の外挿線と交わる深さ(実 用飛程 R_p)、PDD 100%との交点 R_q等が電子線治療の 重要な線量指標として定義されている¹⁹⁾(図 3).エ ネルギーと深さの関係の経験則として、R_p[cm]、R₈₀ [cm]、R₉₀[cm] はそれぞれ、MeV/2、MeV/3、MeV/4 で近似される.正常組織の被ばくを最小にし、腫瘍 に適切な線量を照射するため、R₈₀や R₉₀が治療領域 として用いられる²⁰⁾.

OAR は平坦性や対称性,照射野辺縁部の線量評価 に用いられる.電子線は物理的特性より側方への散 乱が大きいため,高線量領域は幾何学的な照射野よ

図3 電子線の中心軸深部線量曲線を特徴づけるパラメータ

り小さく,低線量領域では逆に大きくなる.ファン トム表面(皮膚表面)とコリメータの距離によって も OAR は大きく変化する.コリメータの位置が皮膚 表面に近いほど 90%線量域が拡大し,半影領域が縮 小するため理想的な線量分布となる¹⁶⁾.

Ⅳ. 放射線治療計画の実際

放射線治療計画装置(Radiation Treatment Planning System: RTPS)

放射線治療計画における線量計算では,水を基準 物質として基礎的な計算を行う.放射線に対して人 体組織(軟部組織,筋肉)は水に近い特性を有して いるが,体内には骨や肺など,水とは物理特性が大 きく異なる組織が混在している.各組織はそれらに 含まれる単位体積当たりの電子数(電子密度)がそ れぞれ異なるため,一次線の減弱,相互作用の発生 確率や散乱線の拡散範囲などが組織ごとに異なる. そのため,RTPSを用いた治療計画にはCT画像が必 須である.予め取得したCT値-相対電子密度変換 テーブルを利用し,さらに,病巣と正常組織の3次 元的位置関係を評価し,3次元的線量分布を計算す る.3次元線量分布計算では,水に対する線量計算 だけでは不十分であり,電子密度が水とは異なる領 域(不均質領域)に対する補正計算(不均質補正計 算)が必要となる.吸収線量を正確に計算するため には,一次光子,散乱光子,二次電子の挙動を考慮 する必要があり,さまざまな線量計算アルゴリズム が用いられている^{21,22)}.

2. 電子線治療

電子線治療は、最大中心軸線量(100%)から90% (あるいは 80%)の範囲を利用し、その外側におけ る線量分布は横方向と遠位方向の両方で急激に低 下する.よって、表在性の病巣(皮膚表面から5 cm 程度以内)には高線量で照射しつつ、深部の正常組 織の線量は低減することが可能である.電子線は物 質とのクーロン作用によって, ジグザグに進みなが らエネルギーを失っていくため、電子線の進む方向 は前もって予測できない²³⁾.人体に入射された後ど のように進みエネルギーを付与するのか不確実で, 線量分布の計算は困難とされ, RTPS は線量分布の参 考として利用されている. そのため, 一般的に, 電 子線治療で使用するエネルギーおよび照射野は、視 診や触診で評価した病巣の進展範囲(大きさや深さ) に経験則を合わせて決定する.具体的には、線源表 面間距離 (source-surface distance: SSD) を一定 (100 cm) とし、リニアック毎にあらかじめ計測さ

れた PDD や OAR を確認し、D_{max} を基準に処方線量を 投与する. すなわち、病巣に合わせて線量分布を個 別化するX線治療に対し、電子線治療では治療部位 の形状に合った線量分布を選択している.

V. 電子線治療の適応疾患

飛程が短く,深層に与えるエネルギーが小さい 電子線の物理特性を利用して,電子線治療は比較 的表在部の放射線治療に用いられる(表 3)²⁴⁾. 具体的な代表的疾患として,皮膚癌,乳癌,ケロ イドの電子線治療を概説し,現時点における問題 点について述べる.

表 3. 電子線治療の適応疾患

部位	疾患		
皮膚	皮膚癌,ケロイド,陰茎癌,外陰部癌		
皮下・軟部 組織	頭頸部腫瘍, 乳癌, 表在性リンパ節転移, 血管腫		
腔内	口腔癌、腟癌		

1. 皮膚癌

皮膚癌は皮膚を構成するあらゆる組織から発生 し、様々な種類が存在する.代表的なものとして、 基底細胞癌,有棘細胞癌,悪性黒色腫(メラノーマ) が挙げられる²⁵⁾.その中でも高齢者の顔面部に好発 する基底細胞癌と有棘細胞癌は放射性感受性が高 く、非外科的治療としての電子線治療の需要が高ま っている.凹凸な皮膚表面を平坦化し、d_{max}を病巣 に一致させるため、0.5~1.0 cm厚のボーラスを用 いる.D_{max}の90%線量を処方線量とし、2 cm 未満の 腫瘍には64 Gy/32 回/6.4 週、55 Gy/20 回/4 週、50 Gy/15 回/3 週、35 Gy/5 回/1 週のスケジュールが、 2 cm以上の腫瘍では66 Gy/33 回/6.6 週または55 Gy/20 回/4 週が推奨されている²⁶⁾.

鼻部や眼窩部など凹凸が存在する頭頸部では,皮 膚面に対し斜入射となる場合、線量分布は増減を伴 って不確かとなる.ボーラスを使用する場合には, 皮膚面とボーラスの間に空気層 air gap が発生し, 線量分布への影響を考慮する必要がある(図 4). air gap が線量分布へ与える影響には,表面線量お よび D_{max} の低下が知られている.また,厚いボーラ ス,狭い照射野,低い電子線エネルギーを用いる場 合に air gap の影響増加が報告されている²⁷⁾.よっ て,air gap を避けるために,ボーラスと皮膚表面 の密着性に注意したセットアップや治療計画時の 工夫が必要である.

電子線が斜めに入射される場合, PDD が変化する. 電子線束をペンシルビームの集まりと考えた場合, 体内への斜入射によって, D_{max} は浅部へ移動し, 浅 いところで側方散乱の影響が増加する(図 5).一方, 通常の治療領域では側方散乱の影響が減少するた めに線量は低減する. 斜入射による影響は, 胸壁な

図4. 電子線治療における線量分布の調整

皮膚面よりも深部が最大線量となるビルドアップ(A)に対し,ボーラスを用いて病巣線量を増加させる(B).凹凸な 皮膚面ではair gap(*)や斜入射が発生し,線量分布は不確かとなる(C).

図5 電子線束の模式図

通常の垂直入射(A)と比較して、斜入射(B)では、散乱線の影響が変化し、浅部(*)の線量が増加する.通常の治療領域(●)における線量は低減する.

どの曲面に入射した場合にも現れる²⁸⁾. 斜入射を避ける工夫として, 患者ごとに専用のボーラスを作成し, 凹凸な皮膚表面の平坦化が検討されている.

2. 乳癌

日本における乳癌は罹患・死亡率ともに年々増加 傾向にあり、2020年現在、女性の発生部位別罹患率 第1位である.女性の10人に1人が罹患すると考 えられている.5年生存率は90%と高く、罹患は多 いが、治療に比較的よく反応する.乳房温存手術を 行った場合には患側全乳房照射の適応となる.さら に、腫瘍床へのブースト照射が推奨されている²⁹⁾.

全乳房照射は部分切除後の乳房全体を標的体積 とし、X線を用いた接線照射を行う.総線量 50 Gy/25回/5週が標準である.腫瘍床へのブースト照 射には、電子線を用い、胸壁面が Rso となるエネル ギーを選択して前方1門照射を行う.10 Gy/5回の 線量分割が一般的である³⁰.

電子線 PDD には照射野サイズ依存性が知られている. 照射野サイズ [cm] が電子線エネルギーに応じた R_p (MeV/2) よりも小さい場合,横方向の電子平衡が成立せず,深部の線量低下を来す.乳癌の電子線 治療では,乳房の厚みに応じて皮膚癌よりも大きな エネルギーを用いるので,狭い照射野を避ける必要 がある.

3. ケロイド

外傷や熱傷,また手術によって生じた創には,そ の治癒過程で瘢痕が生じる.肥厚や発赤を伴う瘢痕 を肥厚性瘢痕という.肥厚性瘢痕は 3~6 カ月程の 最盛期を経て徐々に沈静化し,成熟瘢痕となる.6 カ 月を経ても沈静化せず,隆起や発赤に加えて,当初 の創範囲を超え水平方向にも増大していくものを ケロイドという.ケロイドは水平方向にも垂直方向 にも拡大増殖を続けるため,炎症性と腫瘍性を兼ね 備えた疾患と考えられる.ケロイドの3大好発部位 は,前胸部,肩甲部,恥骨上部であり,共通するの は張力がかかりやすい部位である³¹⁾.

原則として外科的切除の後,再発予防を目的とした放射線治療を行う.電子線を用いた1門照射で, 20 Gy/4回/4日相当が必要とされている.深部への線量到達を防ぐため,通常設定できる最小の4 MeV が推奨されている.さらに,皮膚表面が D_{max} になる よう 0.5 cm 程度のボーラスを用いる³²⁾.

複雑な形状のケロイドに対する電子線治療では, 術後の形状に合わせた照射野を必要とする.電子線 アプリケーターに鉛遮蔽ブロックやカットアウト を結合して不整形照射野を作成する.照射野整形物 質により電子線は散乱し,表面線量の増加,線量分 布のみだれ,および PDD に変化が発生する.また, 電子線が衝突することで,制動放射線の発生源とな り,電子線束にX線混入をきたすこともある.電子 線治療を経験則で行うにあたって,線量計算が不確 かとなる危険性を十分に認識する必要がある³³⁾.

VI. 線量計算アルゴリズムの進化

放射線治療における線量計算アルゴリズムは時 代とともに改良されてきた.1950年代にCo-60によ って深部病巣への放射線治療が可能になると,不均 質補正の必要性が認識され始めた.手計算に不均質 補正を加える補正ベース法は,第I世代から第Ⅲ世 代に分類される.水中で測定された PDD に対して, 体輪郭補正,ビーム修飾器具補正や不均質補正を考 慮し最終的な線量分布を求めるアルゴリズムであ る.いずれのアルゴリズムも不均質領域における散 乱線の計算精度に限界があったが,エネルギーが低 く,二次電子の飛程も短い Co-60 (1 MeV 程度の単 色γ線)を用いた放射線治療には十分に対応できて いた.

高エネルギーX線を発生させるリニアックが治 療の現場に登場してくると,二次電子の飛程は非常 に長くなり,二次電子の散乱を詳細に評価できるア ルゴリズムが必要となった. 第IV世代は解析学的に 線量計算を行うモデルベースアルゴリズムである. 初めに有用とされたものは Convolution 法である. 当時の 3D Convolution 法は時間がかかり実用的で なく, Pencil Beam (PB) 法が主流となった. PB 法 では、照射野内を通過する電子線束を細い線束であ るペンシルビームの集まりと仮定する.線量計算で は横方向への広がりを評価するためにあらかじめ モンテカルロ計算により算出された2次元カーネ ルを使用して線量分布を計算する³⁴⁾. Superposition 法は相対電子密度に基づき二次電子 による相互作用の起こりやすさや不均質補正を考 慮した線量計算である.水に比べて電子数が少ない 肺内において, Convolution 法は線量分布を正しく 再現できないが、Superposition 法では、肺内の線 量低下を正しく再現できる³⁵⁾.

近年,確率論を応用して放射線の挙動をより精密 にシミュレーションするモンテカルロ (Monte Carlo: MC)法が臨床応用されるようになった.MC 法による線量計算は乱数を用い,最も起こりうる近 似解を求める.光子や電子などの粒子の挙動を1個 ずつ計算するシミュレーションを繰り返せば繰り 返すほどより統計誤差は小さくなり真の値に近似 するが,計算時間が長くなるというデメリットが生 じる³⁶⁾.X線による放射線治療が複雑化していく中 で,MC法を用いた治療計画の有用性が報告されてい る³⁷⁾.

直進するX線とは異なり、電子線は進行方向を常 に変化させながら横方向に広がりエネルギーを失 っていく.X線における線量分布計算は一次線の減 衰と二次電子による線量付与を分けて評価してい るが,電子線では入射後の線量付与を予測すること が難しい. 電子線の治療計画では, RTPS を用いず, PDD を参照する手計算法が主流であった^{38,39)}. 1970 年代以降,電子線治療の適応が拡大し,不均質な組 織における線量を正確に評価する臨床的重要性が 高まった.当時の不均質補正は1次元で行われてい た.物質を均質と仮定し、横方向に発生する散乱は 考慮されていなかった⁴⁰⁾. CT 画像を治療計画に用 いるようになった 1995 年頃, RTPS を用いた線量分 布計算は PB 法で行われていた⁴¹⁾. PB 法では, 電子 線における一次線の変化と二次粒子による線量付 与を合わせて評価可能である³⁸⁾.しかしながら、そ の計算精度には限界があり、より高精度な計算アル ゴリズムが望まれていた.

2000年以降、コンピュータの技術革新に加え, MC 法の高速化(fast Monte Carlo)が開発され、電子 線治療における MC (electron Monte Carlo: eMC) 法が商用 RTPS に導入された⁴²⁾. eMC 法では, ①加 速器ヘッドから患者入射面までの電子の輸送, ②患 者体内での電子の相互作用による線量付与をそれ ぞれ計算する. fast Monte Carlo として早期に開発 されたマクロモンテカルロ (macro Monte Carlo: MMC) 法では, 入射電子は物質中で球から球へエネル ギーを伝搬しながら移動すると仮定し, エネルギー の伝搬をマクロなスケールで扱う43).また、ボクセ ルベースの MC (voxel based Monte Carlo: VMC) 法では,二次電子や制動放射の生成,クーロン相互 作用,電子の連続的なエネルギー損失をシミュレー ションし、最終的にボクセル毎への線量投与を積算 していく⁴⁴⁾. いずれの eMC 法もこれまでの PB 法よ

り計算精度が高く,電子線治療の高精度化が期待される.

Ⅶ. おわりに

電子線はX線とは全く異なる挙動を示し,電子線 治療の適応疾患や放射線治療計画もX線とは全く 異なる. RTPS に搭載された線量計算アルゴリズムの 改良に伴って,高精度電子線治療の実現が期待され る.3次元治療計画が可能となれば,症例毎に病巣 の部位や大きさに応じた電子線治療の個別化が実 現する.斜入射,照射野サイズ,不整形照射野,あ るいはボーラス使用時における air gap などによる 影響を正確に評価できれば、処方線量の調整も可能 となる.さらに,複数の電子線照射野の組み合わせ が容易で正確となれば,現状の1門照射に比べ,電 子線治療の適応拡大が期待される.

参考文献

- 日本放射線腫瘍学会,他:臨床放射線腫瘍学– 最新知見に基づいた放射線治療の実践.70-71. 南江堂.東京,2012.
- 西臺武弘:放射線医学物理学. 2-5. 文光堂. 東 京, 2015.
- 赤澤博之:図解 診療放射線技術実践ガイド. 752-762. 文光堂.東京, 2017.
- 柴田徳思:放射線概論第9版.106-114.通商産 業研究所.東京,2016.
- 5) 日本放射線技術学会:放射線技術学シリーズ 放射線生物学第(改訂3版).33-34.オーム社. 東京,2019.
- Shaw, A.: Evaluation of the effects of bolus air gaps on surface dose in radiation therapy and possible clinical implications. 1-11. University of Oxford. England, 2009.
- 7) 三枝健二,他:改訂版 放射線基礎計測学.16-25. 医療科学社.東京,2008.
- 8) 荒木不次男:医学物理教科書放射線治療物理学.30-49. 国際文献社. 東京, 2016.
- 9) 加藤秀起:光子の物質に対する質量エネルギー

転移係数. 日本放射線技術学会雑誌. 70:684-691,2014.

- Dance, D. R., et al: Diagnostic radiology physics: A handbook for teachers and students. 11-28. International Atomic Energy Agency. Vienna, 2014.
- 11) 小田切丈: 放射線と原子分子の相互作用 RADIOISOTOPES. 66:417-424,2017.
- 12) 三枝健二,他:改訂版 放射線基礎計測学.27-31. 医療科学社.東京,2008.
- (3)保科正夫:放射線治療の標準.195-198.日本放 射線技師会出版会.東京,2007.
- 14) 井上裕之: 放射線治療物理一技術を支える基礎
 知識. 放射線治療かたろう会会誌. 22:117-125,
 2017.
- 宇野弘文:入力データの種類と収集方法.放射 線治療分科会誌. 19:56-62,2005.
- 16) 荒木不次男:医学物理教科書放射線治療物理学.120-200. 国際文献社. 東京, 2016.
- 17) 矢野慎輔: 図解 診療放射線技術実践ガイド.773-782. 文光堂. 東京, 2017.
- 奥村雅彦:放射線治療技術標準テキスト. 209-231. 医学書院. 東京, 2019.
- Hogstrom, K. R., et al.: Review of electron beam therapy physics. Phys. Med. Biol. 51: R455-489, 2006.
- 日本放射線治療専門技師認定機構:放射線治療 技術標準テキスト.209-2011.医学書院.東京, 2019.
- 21) 榮武二,他:放射線治療基礎知識図解ノート.金原出版株式会社. 92-95. 東京, 2017.
- 22) 日本放射線治療専門技師認定機構:放射線治療 技術の標準.252-271.日本放射線技師会出版会. 東京,2007.
- 23) 霜村康平:現場に役立つ線量計算アルゴリズム の基礎知識.かたろう会誌.21号:27-33,2016.
- 24) 嘴木昭則:電子線治療における適応疾患とその 照射法の工夫.放射線治療分科会誌. 15:31-34, 2001.
- 25) 公益社団法 人日本放射線腫瘍学会:やさしく わかる放射線治療学.学研メディカル秀潤社. 東京.95,2018.

- 26) 公益社団法人 日本放射線腫瘍学会:放射線治 療ガイドライン 2016 版. 306-309. 金原出版. 東京, 2015.
- 27) Kong, M., et al: An investigation of central axis depth dose distribution perturbation due to an air gap between patient and bolus for electron beams. Australasian Physical & Engineering Sciences in Medicine. 30: 111-119, 2007.
- 28) Wambersie, A., et al: ICRU REPORT 71. 42-44. Oxford University. England, 2004.
- 神保健二郎,他:特集 外科医のための癌診療 データ,乳癌の疫学.臨床外科増刊号. 67:66-71,2012.
- 30) 公益社団法人日本放射線腫瘍学会:放射線治療 ガイドライン 2016 版. 170-176.金原出版.東 京, 2015.
- 小川令,他:ケロイドおよび肥厚性瘢痕の予防 と治療法.日本医科大学医学会雑誌.1:121-128, 2005.
- 32) 公益社団法人日本放射線腫瘍学会:放射線治療 ガイドライン 2016 版. 375-378. 金原出版. 東 京, 2015.
- 33) 吉龍澄子,他:瘢痕・ケロイドに対する治療— われわれの放射線治療の使い分け.創傷,3:72-81,2012.
- 34) 平井奈々子,他:外照射治療計画における線量 計算アルゴリズムの進化.放射線治療計画装置 特集医学物理.36:137-147,2016.
- 35) 日本放射線腫瘍学会他:臨床放射線腫瘍学---最

新知見に基づいた放射線治療の実践. 77-107. 南江堂. 東京, 2012.

- 只野喜一:モンテカルロ法入門—Dose to medium と Dose to water を中心に. 医学物理(日 本医学物理学会機関誌). 36: 148–150, 2016.
- Ma, C. M., et al: Clinical implementation of a Monte Carlo treatment planning system. Med Phys. 26: 2133-2143, 1999.
- 38) 荒木不次男:医学物理教科書放射線治療物理学.202-215. 国際文献社. 東京, 2016.
- 39) 塩路真紀,他:異なる線量正規化法による電子 線モンテカルロ計算と従来の手計算法とのモ ニタユニット比較.日本放射線技術学会雑誌. 75:755-764,2019.
- 40) 荒木不次男: 図解 診療放射線技術実践ガイド.806-813. 文光堂. 東京, 2017.
- 41) 森剛彦:高エネルギー電子線治療における体内の不均質部補正法.日本放射線技術学会雑誌.
 40:932-941,1984.
- 42) Jabbari, K.: Review of fast Monte Carlo codes for dose calculation in radiation therapy treatment planning. J Med Signals Sens. 1: 73-86, 2011.
- 43) Neuenschwander, H., et al: A macro Monte Carlo method for electron beam dose calculations. Physics in Medicine and Biology. 37: 107-125, 1992.
- 44) Kawrakow, I., et al: 3D electron dose calculation using a Voxel based Monte Carlo algorithm (VMC), Med Phys, 23: 445-457, 1996.