Photoluminescence of Perovskite Nanosheets Prepared by Exfoliation of Layered Oxides, K₂Ln₂Ti₃O₁₀, KLnNbO₇, and RbLnTa₂O₇ (Ln: Lanthanide Ion)

大学院自然科学研究科助教伊田進太郎パ前期課程緒方盟子アメリカペンシルバニア州立大学博士研究員 エグチミハルパ博士研究員 W. Justin Youngbloodパ教授 Thomas E. Mallouk大学院自然科学研究科教授

Abstract:

Luminescent perovskite nanosheets were prepared by exfoliation of singleor double- layered perovskite oxides, $K_2Ln_2Ti_3O_{10}$, $KLnNb_2O_7$, and RbLnTa2O7 (Ln: lanthanide ion). The thickness of the individual nanosheets corresponded to those of the perovskite block in the parent layered compounds. Intense red and green emissions were observed in aqueous solutions with Gd_{1.4}Eu_{0.6}Ti₃O₁₀- and La_{0.7}Tb_{0.3}Ta₂O₇-nanosheets, respectively, under UV illumination with energies greater than the corresponding host oxide band gap. The coincidence of the excitation spectrum and the band gap absorbance indicates that the visible emission results from energy transfer within the nanosheet. The red emission intensity of the Gd_{1.4}Eu_{0.6}Ti₃O₁₀-nanosheets was much stronger than that of the La_{0.90}Eu_{0.05}Nb₂O₇-nanosheets reported previously. The strong emission intensity is a result of a two-step energy transfer cascade within the nanosheet from the Ti-O network to Gd^{3+} and then to Eu^{3+} . The emission intensities of the $Gd_{1.4}Eu_{0.6}Ti_{3}O_{10}$ and La_{0.7}Tb_{0.3}Ta₂O₇-nanosheets can be modulated by applying a magnetic field (1.3-1.4 T), which brings about a change in orientation of the nanosheets in solution. The emission intensities increased when the excitation light and the magnetic field directions were perpendicular to each other, and they decreased when the excitation and magnetic field were collinear and mutually perpendicular to the direction of detection of the emitted light.

(Journal of American Chemical Society, Vol. 30, No. 52, p.7052-7059, 2008)