A new approach for the synthesis of layered niobium sulfide and restacking route of NbS_2 nanosheet

大学院自然科学研究科	後期課程		井澤一 欽
11	助	教	伊田進太郎
]]	博士研究員		ウナー・ウグー
11	前期課程		山口朋紀
韓国 梨花女子大学			Kang Joo-Hee
]]	教	授	Choy Jin-Ho
大学院自然科学研究科	教	授	松本泰道

We have developed a new process for the synthesis of a layered niobium sulfide that involves heating $K_4Nb_6O_{17} \cdot 3H_2O$ with a H_2S/N_2 gas mixture. It was confirmed that heating the starting layered oxide at 750 1C for 10 h under the gas flow yielded a highly crystalline, single-phase $K_{0.34}(H_2O)_{0.7}NbS_2$. The layered sulfide slabs had a large plate-like shape. Potassium ions in the interlayer of $K_{0.34}(H_2O)_{0.7}NbS_2$ could be exchanged with protons by stirring in 2M H_2SO_4 . It was found that the proton in the proton-exchanged form can be easily exchanged with other cations. The protonexchanged form was exfoliated into NbS₂ nanosheets by ultrasonication in water. According to the atomic force microscopy (AFM) images, NbS₂ nanosheets had a thickness of around 4Å, which roughly corresponded to the thickness of a single NbS₂ host layer. NbS₂ nanosheets could be restacked with the intercalation of Eu³⁺ or tetrabutylammonium ions by an electrostatic self-assembly deposition (ESD) technique.

(Journal of Solid State Chemistry, Vol. 181, p. 319-324, 2008.2)