37 - 30 Selective substitution of alkali cations

in mixed alkali glass by solid-state electrochemistry

物質生命化学科 助 手 鎌 田 海 大学院自然科学研究科 前期課程 堤 優 子 山 下 周 一 教 授 松 本 泰 道

Electrosubstitution of alkali cations in mixed-alkali glass containing both Na_2O and K_2O for other monovalent metal cations (M+ = Li⁺, Ag⁺, and Cs⁺) was investigated using a solid-state electrochemical method. The fundamental electrolysis system consists of anode/M⁺-conducting microclectrode/glass/Na-betaⁿ-Al₂O₃/cathode, where M⁺ is substituted for the alkali metal ions in the glass under an applied electric field. Li⁺ ions attacked only Na⁺ sites, and Ag⁺ ions replaced Na⁺ sites more readily than K⁺. In contrast, Cs⁺ ions simultaneously substituted for both Na⁺ and K⁺ sites. The substitution behavior appears to depend on the difference in ionic conductivity between K⁺ and Na⁺ and the radius of the dopant. This mechanism was discussed qualitatively.

(Journal of Solid State Chemistry, Vol. 177, No. 1, pp. 189-193, (2004).)