37 - 35 Electrochemical approach to evaluate the mechanism of photocatalytic water splitting on oxide photocatalysts

大学院自然科学研究科		教	授	松 本 泰 道
		後期	課程	ウグー・ウナー
		前期課程		田中典之
東京理科大学	理学部応用化学科	教	授	工藤昭彦
		助	手	加 藤 英 樹

Photoelectrochemical measurements of TiO₂, NaTaO₃, and Cr or Sb doped TiO₂ and SrTiO₃ photocatalysts were carried out in H₂ and O₂ saturated electrolytes in order to evaluate the reverse reactions during water photolysis. The poor activity of TiO₂ as a result of reverse photoreactions of O₂ reduction and H₂ oxidation was revealed with the respective high cathodic and anodic photocurrents. The rise in the photocurrents at NaTaO₃ after La doping was in harmony with the doping-induced increase in the photocatalytic activity. NiO loading suppresses the O₂ photoreverse reactions, which declines photocatalytic activity, and/or promotes the photo-oxidation of water, because the O₂ photo-reduction current was scarcely observed near the flatband potential. Photocurrents of O₂ reduction and H₂ oxidation were observed under visible light for the Cr and Sb doped SrTiO₃ and TiO₂, respectively. These phenomena are in harmony with the previous reports on the photocatalysts examined with sacrificial reagents.

(Journal of Solid State Chemistry, Vol. 177, No. 11, pp. 4205-4212, (2004).)