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de Haas–van Alphen oscillations near the Lifshitz transition from two electron pockets
to one in the two-dimensional Dirac fermion systems
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We theoretically study the de Haas–van Alphen (dHvA) oscillations in the system with changing the topology
of the Fermi surface (the Lifshitz transition) by electron dopings. We employ the two-dimensional tight-binding
model for α-(BEDT-TTF)2I3 under pressure which has two Dirac points in the first Brillouin zone. When this
system is slightly doped, there exists two closed Fermi surfaces with the same area and the dHvA oscillations
become saw-ooth pattern or inversed sawtooth pattern for both cases of fixed electron filling (ν) or fixed chemical
potential (μ) with respect to the magnetic field, respectively. By increasing dopings, the system approaches the
Lifshitz transition where two closed Fermi surfaces are close each other. Then, we find that the pattern of the
dHvA oscillations changes. A jump of the magnetization appears at the center of the fundamental period, and
its magnitude increases in the case of the fixed electron filling, whereas a jump is separated into a pair of jumps
and its separation becomes large in the case of the fixed chemical potential. This is due to the lifting of double
degeneracy in the Landau levels. Since this lifting is seen in the two-dimensional Dirac fermion system with
two Dirac points, the obtained results in this paper can be applied to not only α-(BEDT-TTF)2I3, but also other
materials with closely located Dirac points, such as graphene under the uniaxial strain, in black phosphorus,
twisted bilayer graphene, and so on.
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I. INTRODUCTION

The kinetic energy of electrons perpendicular to an applied
magnetic field (H) is quantized as Landau levels [1–3]. As a
result, the magnetization oscillates as a function of the inverse
of the magnetic-field (1/H) at low temperatures, which is
called the de Haas–van Alphen (dHvA) oscillations [1,4] and
gives an important information of the cross-sectional area
of the Fermi surface. However, when the system undergoes
the Lifshitz transition [5], the topology and the area of the
Fermi surface change. Therefore, it is expected that interest-
ing phenomena occur in dHvA oscillations near the Lifshitz
transition.

In this paper we study the dHvA oscillations numerically
by using the tight-binding model with the Peierls phases
[6–8]. In this approach the field-induced quantum tunneling
is studied without the semiclassical approach of magnetic
breakdown [1].

In a previous study [9], we have calculated the ener-
gies under the magnetic field in the tight-binding model for
α-(BEDT-TTF)2I3, which is known as one of quasi-two-
dimensional Dirac fermions systems where there are one hole
pocket and one or two electron pocket(s). We have shown
the lifting of double degenerated electron pocket’s Landau
levels, which is caused by the field-induced quantum tunnel-
ing. A similar lifting has been shown in the graphene with
the anisotropic transfer integral of two-dimensional Dirac
fermions system [10] and in the simple model with two elec-

tron pockets [11]. These liftings are seen near the Lifshitz
transition.

Recently, we have studied [12] the dHvA oscillations near
the Lifshitz transition (i.e., in the case when the lifting of the
Landau levels occurs) in the two-dimensional compensated
metallic system with one hole pocket and one or two electron
pockets where one electron pocket is transformed into two
electron pockets by applying the uniaxial pressure. As a result,
we have found that the Fourier transform intensities (FTIs)
for the frequencies corresponding to the 3/2 and 5/2 times
area of a hole pocket are enhanced at the Lifshitz transition
[12]. We have explained that the enhancement of the 3/2
times frequency is caused by the commensurate separation
of doubly degenerated Landau levels with the phase factor
(γe � 0).

That study [12] has been performed in two-dimensional
compensated metal. If one hole pocket does not exist, more
directly we can examine the effect of the Lifshitz transition for
the dHvA oscillations. Namely, we make clear how the dHvA
oscillatios are varied by the lifting of doubly degenerated
Landau levels. Therefore, in this paper, we employ spinless
two-dimensional tight-binding model of α-(BEDT-TTF)2I3

at P = 5.0 kbars where two electron pockets with the Dirac
cones are changed to one electron pocket with a narrow neck
upon increasing electron dopings (see Figs. 1 and 2). This
Fermi-surface situation is realized in the doped graphene
under the uniaxial strain [13,14] in black phosphorus [15]
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(a)

(b)

(c)

FIG. 1. (a) The third and fourth energy bands (ε0
3 and ε0

4) at P =
5.0. (b) is a figure of (a) from a distant view point along the ky axis. ε0

s

is the energy of the saddle point, ε0
D is the energy at the Dirac points,

and ε0
F is the Fermi energy at 3/4 filling, where ε0

D = ε0
F � 0.174 79.

(c) Contour plots of the fourth band.

and twisted bilayer graphene [16,17]. Thus, our calculation
is applicable to the two-dimensional Dirac fermion systems
widely.

Lifshitz and Kosevich (LK) [18] have derived semiclas-
sically the standard LK formula for the dHvA oscillations,
which is explained in Appendix A where the frequency is
proportional to the extremal cross-sectional area of the Fermi
surface. Since in the Fermi surface of Fig. 2 the field-induced
quantum tunneling is expected, a new period correspond-
ing to that effective closed area may be additionally seen
in the dHvA oscillations. This phenomena is semiclassically

(a)

(b)

(c)

FIG. 2. Fermi surfaces at P = 5.0 (a) 0.766 67 filling
(b) 0.767 86 filling, and (c) 0.769 23 filling in the extended zone,
where ±kD are Dirac points and k4s is the saddle point of the fourth
band. Red arrows are for the direction of the orbital motion for
electrons in the magnetic field in the semiclassical picture. We ob-
tain Ae/ABZ � 0.0668 in (a), Ae/ABZ � 0.0716 in (b), and Ae/ABZ �
0.0768 in (c), where ABZ is the area of the Brillouin zone and Ae is
the sum of the area of two electron pockets [(a) and (b)] or the area
of an electron pocket (c).

called the magnetic breakdown [1]. The semiclassical network
model [19–21] for the magnetic breakdown is conventionally
used in which the probability amplitude of the tunneling is
introduced into the LK formula as parameters. But, since the
network model [19,21] has been constructed based on electron
tunneling, such as Fig. 3, that model may not be applicable to
the Fermi surface of Figs. 2 and 4, which will be explained in
the next section. Therefore, in this paper, we study the dHvA
oscillations by quantum-mechanical calculations by using the
tight-binding model with the Peierls phase.
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(d)

ε0
F Δ

Δ=0
Δ=0

ε0

FIG. 3. Schematics for the tunneling of electrons in the momen-
tum space [(a) and (b)] for the two-dimensional electron pocket
(� = 0) and the quasi-one-dimensional Fermi surface and two-
dimensional electron pocket (� �= 0). Red lines are the Fermi
surface. Red dotted arrows indicate the direction of the tunneling.
Black dashed-dot lines are the Brillouin-zone boundary. (c) and
(d) are schematic band structures along the green dashed lines in
(a) and black dash-dot lines in (b), respectively.

II. TIGHT-BINDING MODEL FOR α-(BEDT-TTF)2I3

AND THESE FERMI SURFACES

α-(BEDT-TTF)2I3 [22–24] is known as one of quasi-
two-dimensional organic superconductors. The realization

(a)

(b)

(c)

(d)

ε0 ε0  
F

ε0
F

for (b)

for (c) 
ε0  

F for (a)

FIG. 4. Schematics for the tunneling of electrons in the momen-
tum space [(a)–(c)] for the model used in this paper. Red lines are
the Fermi surface. Red dotted arrows indicate the direction of the
tunneling. Black dashed-dot lines are the Brillouin-zone boundary.
Blue dots are the saddle points. In (d), green and blue lines are the
schematic band structures along the green dashed and blue dashed
lines in (a)–(c), respectively. The dispersions of the green line and
the blue line have a minimum and a maximum at the saddle point,
respectively.

of the massless Dirac fermions have been theoretically
shown by using the tight-binding model [25] and the first-
principle band calculations [26–28]. Experimentally, massless
Dirac fermions have been confirmed under the pressure. For
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example, the temperature (T ) dependence in the resistivity is
very small [29,30]. The electronic specific heat is almost pro-
portional to T 2 [31]. The N = 0 Landau level and the phase
of the Landau level (γ = 0) have also been shown from the
interlayer magnetotransport [32] and from the Shubnikov–de
Hass (SdH) oscillations [33], respectively.

In this paper, we ignore the three dimensionality of
α-(BEDT-TTF)2I3 due to the smallness of the interlayer
coupling. Four energy bands are described by the highest
occupied molecular orbits of four BEDT-TTF molecules in
the tight-binding model. A metal-insulator transition happens
at the ambient pressure and at low pressures. This transition is
attributed to the charge ordering [34–37]. However, it has been
observed that the metal-insulator transition is suppressed, and
the metallic state is realized by the hole dopings under the
pressure of 17 kbars [33] or the electron dopings under the
pressure of more than 15 kbars [38]. The SdH oscillations
have been also observed where the frequencies are 1.4 and
9.18 T in Ref. [33] and 2 and 8.5 T in Ref. [38]. Since we focus
on that metallic situation, we neglect the electron interactions.

In the tight-binding model employed in this paper, the
interpolation formula [9,12,39] for the transfer integrals based
on the extended Hückel method [40,41] has been used.
In these band parameters at low uniaxial pressure (P �
3.0 kbars = 0.3 GPa) in α-(BEDT-TTF)2I3, the energy at
the Dirac points is lower than the maximum energy of the
lower band. Then the Fermi surface of the nondoping sys-
tem consists of one hole pocket and one or two electron
pockets, i.e., the system becomes the compensated metal.
At P � 0.2 kbars, the Lifshitz transition [5] occurs, where
one electron pocket is transformed into two electron pockets.
Hereafter, we take eV and kilobars as the units of trans-
fer integrals and the pressure, respectively. In this paper,
we fix P = 5.0 kbars and change the electron filling. The
third and fourth bands from the bottom are shown in Fig. 1.
The Fermi surfaces for the 0.766 67 filling (two electron
pockets), the 0.767 86 filling (Lifshitz transition), and the
0.769 23 filling (one electron pocket) are shown in Fig. 2. At
the 0.766 67 filling, there are two electron pockets with the
same area as shown in Fig. 2(a). When the electron filling
is increased, the Lifshitz transition occurs at the 0.767 86
filling as shown in Fig. 2(b). At the 0.769 23 filling, there
is one large electron pocket with a narrow point as shown
in Fig. 2(c). We numerically calculate the magnetizations
changing the filling from the 0.766 67 filling to the 0.769 23
filling at P = 5.0. Since α-(BEDT-TTF)2I3 has 3

4 filling,
the electron dopings are needed to confirm our calculations
experimentally.

In the Fermi surface of Fig. 2, the saddle point at (kx, ky) =
(π/a, 0) or (−π/a, 0) is shown, which is the time-reversal
invariant momentum. The densities of states are logarithmic
divergences due to the saddle point as shown in Fig. 5. Re-
cently, the dHvA oscillations near the Lifshitz transition have
been calculated [42] by taking the effect of the van Hove
singularity due to the saddle point by using the semiclassical
approximation in Refs. [43,44]. They [42] have found that
the dHvA oscillations near the Lifshitz transition is different
from the LK formula. The system considered by them is that a
two-dimensional electron pocket is changed to the quasi-one-
dimensional Fermi surface where broadening of the Landau

(a)

(b)

FIG. 5. (a) The density of states [D3(ε0) and D4(ε0)] of the third
band and the fourth band H = 0 and P = 5.0 as a function of the
energy (ε0) measured from ε0

F. (b) is an enlarged figure of D4(ε0 ).

levels is caused, whereas two electron pockets are changed to
one electron pocket in our model as shown in Fig. 2.

The semiclassical network model has often been adopted
in the case of Fig. 3 [19–21]. In that treatment the tunneling
probability for the magnetic breakdown is assumed to be P =
exp(−H0

H ), where H0 is called the breakdown field H0 ∝ �2

and � is the magnitude of the energy gap [20]. When the
energy gap is the large limit, the electron tunneling between
the energy band becomes zero, i.e., P = 0. When the energy
gap is zero (� = 0), we obtain P = 1 and Q = 0 (Q is the
reflecting probability) as shown in Fig. 3(a) where electrons
can go straight. On the other hand, the case as in Fig. 4 is
different from that in Fig. 3. In this case two Fermi surfaces
are separated not by the energy gap � but by the saddle point.
When the chemical potential is the same as the energy at the
saddle point, a semiclassical orbit in the momentum space
collide head on and cannot go straight at the saddle point.
The network model may not be applied naively to the case
of Fig. 4.

III. ENERGY IN THE MAGNETIC FIELD

When the Fermi surface is closed, the Landau levels can
be obtained by using the semiclassical quantization rule [3],
which is explained in Appendix B. However, in that semi-
classical rule, we cannot determine the phase of the Landau
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levels. Moreover, that rule cannot be applied to the case when
the Fermi surface is not closed. In this paper since we treat the
case when the field-induced quantum tunneling happens, the
energies under the magnetic field are calculated numerically
in quantum mechanics. In simple cases without the tunnel-
ing by quantum-mechanical calculations, we can analytically
obtain Landau levels besides phases, which is explained in
Appendix C.

We consider the case that the uniform magnetic field is
applied perpendicular to the x-y plane. We neglect spins for
simplicity. We take the ordinary Landau gauge,

A = (Hy, 0, 0). (1)

The flux through the unit cell is given by

� = abH, (2)

where a and b are the lattice constants. We use the Peierls
substitution as performed before [9]. We can obtain numerical
solutions when the magnetic field is commensurate with the
lattice period, i.e.,

�

φ0
= p

q
≡ h, (3)

where φ0 = 2π h̄c/e � 4.14 × 10−15 Tm2 is a flux quantum,
e is the absolute value of the electron charge (e > 0), c is
the speed of light, h̄ is the Planck constant divided by 2π ,
and p and q are integers. Hereafter, we represent the strength
of the magnetic field by h of Eq. (3). Since a � 9.211 and
b � 10.85 Å in α-(BEDT-TTF)2I3 [22], h = 1 corresponds to
H � 4.14 × 103 T.

We set that the temperature is zero (T = 0) in this paper
because we consider the case when the energy-level broaden-
ing due to the temperature is much smaller than the spacing of
the Landau levels.

We show the energies as a function of h and 1/h as
shown in Figs. 6(a) and 6(b), respectively. We choose p = 2
and 80 � q � 600 (q = 80, 81, . . . , 599, 600). The magnetic
Brillouin zones are −π

a � kx < π
a and − π

qb � ky < π
qb . We

have checked that if q is large (q � 80) which is taken in
this paper, the wave-number dependence of the eigenvalues
ε(i, k) is very small. Therefore, we can safely ignore the
wave-number dependence.

In Fig. 6, two Landau levels with index N are almost degen-
erated at the low energies or small magnetic field. When the
energies or the magnetic field become larger, almost degen-
erated Landau levels with index N are separated. The smooth
separation of these Landau levels is seen when the magnetic
field increases or the energy barrier between two electron
pockets decreases. This separation is due to the field-induced
quantum tunneling.

IV. QUANTUM OSCILLATIONS OF MAGNETIZATIONS

The LK formula is justified when the H dependence of
the chemical potential can be ignored, for example, due to
the electron reservoirs, the three dimensionality, impurity
effect, or the thermal broadening. However, since the H
dependence of the chemical potential becomes large in the
two-dimensional and quasi-two-dimensional systems at low
temperatures, for these systems we have to calculate the dHvA

(a)

(b)

FIG. 6. (a) Energies near the Fermi energy as a function of h at
P = 5.0, where N is the index of the Landau levels for one large
electron pocket. Black dotted lines are the Fermi energy at h = 0 for
the 0.769 23 filling, the 0.767 86 filling, the 0.766 67 filling, and
the 0.764 71 filling, respectively. (b) is an enlarged figure of (a) as a
function of 1/h.

oscillations under the conditions of the fixed electron number
[1,6–8,45–53]. The dHvA oscillations in the case of the fixed
electron number is different from those in the case of the
fixed chemical potential. For example, in two-dimensional
free electrons with one electron pocket or one hole pocket,
the sawtooth pattern of the dHvA oscillations in the case of
the fixed electron number is inverted from that in the case of
the fixed chemical potential.

We calculate the magnetizations (Mν and Mμ) from the
total energies (Eν and Eμ) in two situations; the fixed electron
filling ν, and the fixed chemical potential μ, respectively. The
method of the calculations is explained in Appendix D. When
dopings are induced by substitution, the electron filling is
fixed, whereas the chemical potential is fixed when dopings
are induced by the electric field. We show Mν, Mμ, and en-
ergies as a function of 1/h in the systems with two electron
pockets (0.766 67 filling), at the Lifshitz transition (0.767 86
filling), and with one electron pocket (0.769 23 filling) in
Figs. 7–9, respectively.

In Figs. 7(a)–7(c), the jumps of the fundamental period of
2/ fe and the additional center jump are seen in Mν , which
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(a)

(b)

(c)

FIG. 7. Magnetizations as a function of 1/h with fixed electron
filling ν at the 0.766 67 filling (a), at the 0.767 86 filling (b), and at
the 0.769 23 filling (c).

are caused by the jumps of μ as shown in Figs. 9(a)–9(c).
The magnetizations and μ jump at the same time. In Fig. 7(a),
the center jump of Mν (vertical green dotted arrows) is small.
This small jump is caused by the small center jump of μ

(vertical green dotted arrows) in Fig. 9(a) which comes from
the small lifting of degenerated two Landau levels. Then, two

(a)

(b)

(c)

FIG. 8. Magnetizations as a function of 1/h with fixed chemical
potential μ at the 0.766 67 filling (a), at the 0.767 86 filling (b), and
at the 0.769 23 filling (c).

electron pockets exist near each other [Fig. 2(a)]. In Fig. 7(b)
[at the Lifshitz transition where the Fermi surface is shown
in Fig. 2(b)], the center jump of Mν (vertical green dotted
arrows) becomes larger because the lifting of doubly degen-
erated Landau levels is larger and the center jump of μ is
larger as shown in Fig. 9(b). In Fig. 7(c), the center jump of
Mν becomes larger than that of Fig. 7(b) where there is one
electron pocket with the narrow neck as shown in Fig. 2(c).
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(a)

(b)

(c)

FIG. 9. The chemical potential μ as a function of 1/h at the
0.766 67 filling (a), at the 0.767 86 filling (b), and at the 0.769 23
filling (c) are shown by black lines. Black dashed lines are ε0

F,0.766 67

at the 0.766 67 filling (a), ε0
F,0.767 86 at the 0.767 86 filling (b), and

ε0
F,0.769 23 at the 0.769 23 filling (c). Red dots are the energies. In μ, the

jumps of the fundamental period and the additional center jump are
indicated by vertical green arrows and vertical green dotted arrows,
respectively. In ε0

F and the energies, the crossings for the fundamental
and the additional periods are depicted by vertical black arrows and
vertical black dotted arrows, respectively.

The reason why the additional jump always happens at center
is that the degeneracy of the Landau levels is proportional to
the strength of the magnetic field. If the electron filling will be

increased more than 0.769 23, the jumps of the half period of
1/ fe will only appear.

Next, we discuss Mμ where μ is fixed as a function
of h. Thus, μ = ε0

F,0.766 67, ε0
F,0.767 86, and ε0

F,0.769 23, where
ε0

F,0.766 67, ε0
F,0.767 86, and ε0

F,0.769 23 are the Fermi energies at
the 0.766 67 filling, the 0.767 86 filling, the 0.769 23 filling,
and h = 0. The jumps in Mμ [Figs. 8(a)–8(c)] are caused by
the crossings of the Landau levels and the fixed chemical
potentials [Figs. 9(a)–9(c)]. In Fig. 8(a), a jump in Mμ is
separated into two jumps with two kind of periods (2.5 and
27.5) where the degenerated two Landau levels are lifted a
little as shown in Fig. 9(a), and two electron pockets exist
near each other as shown in Fig. 2(a). In Fig. 8(b) (at the
Lifshitz transition), the spacing between separated jumps in
Mμ becomes large where there are two jumps with periods of
7 and 21. In Fig. 8(c), the spacing becomes large where two
periods are 10.5 and 15.5, respectively. Namely, if the electron
filling will be increased more, two periods will be the same.

We summarize the results obtained in Mν and Mμ upon
changing the filling. When there exist two electron pockets at
a far distance with a large tunneling barrier, the wave forms of
the dHvA oscillations are simple sawtooth with the period of
2/ fe, and those in Mν and Mμ are inverted with each other.
Upon increasing the electron filling, two electron pockets
become closer, and the lifting of doubly degenerated Landau
levels occurs. The small center jump appears in Mν . One jump
in Mμ is separated into a pair of jumps. The center jump in Mν

and the spacing of the separated jump in Mμ become larger as
the electron filling increases. When two electron pockets meet
at a saddle point (at the Lifhsitz transition), the center jump
in Mν and the spacing between separated jumps in Mμ do not
change as a function of h as shown in Figs. 7(b) and 8(b) be-
cause the magnitude of the tunneling barrier is almost zero. By
increasing the electron filling more, the spacing of the Landau
levels as a function of 1/h will be almost constant. Then, the
wave forms of the dHvA oscillations will be almost simple
sawtooth with the period of 1/ fe, and the neck of one electron
pocket will be not narrow. Although the topology of the Fermi
surface is changed [Figs. 2(a)–2(c)] and the density of states is
divergent at the Lifshitz transition (van Hove singularity), the
wave forms of the dHvA oscillations of Mν and Mμ are varied
continuously [Figs. 7 and 8]. The Lifshitz transition is seen as
a crossover in the dHvA oscillations.

The magnetizations are not perfectly periodic near the
Lifshitz transition as shown in Figs. 7 and 8. Nevertheless,
we perform the Fourier transform in the finite range of 2L =
3(2/ fe) at the center 1/hc and examine amplitudes of the
Fourier components in Mν and Mμ as a function of 1/h.
The Fourier transforms of Mν and Mμ are explained in Ap-
pendix E. The FTIs of Mν and Mμ are shown in Figs. 10
(a)–10(c). There are large peaks at fe/2, fe, 3 fe/2, 2 fe, . . .,
where fe � 0.0667 at the 0.766 67 filling, fe � 0.0714 at
the 0.767 86 filling, and fe � 0.0769 at the 0.769 23 fill-
ing, respectively. The frequency fe is almost corresponding
to the sum of the area of two small electron pockets at the
0.766 67 filling and the 0.767 86 filling (Ae/ABZ � 0.0668 and
Ae/ABZ � 0.0716) and the area of one large electron pocket at
the 0.769 23 filling (Ae/ABZ � 0.0768). These frequencies are
the same as those expected by the LK formula. However, the
peaks at fe/2 in Mν and Mμ in Fig. 10(c) are not expected by
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FIG. 10. The FTIs of Mν and Mμ at the 0.766 67 filling (a), at the
0.767 86 filling (b), and at the 0.769 23 filling (c) which are shown by
red circles and blue dots, respectively. In (a), the range of the Fourier
transform is 2L = 3(2/ f ) = 90 and 1/hc = 179.75 in Mν and 2L =
3(2/ f ) = 90 and 1/hc = 166.25 in Mμ. In (b), 2L = 3(2/ f ) = 84
and 1/hc = 167.75 in Mν and 2L = 3(2/ f ) = 84 and 1/hc = 157.75
in Mμ. In (c), 2L = 3(2/ f ) = 78 and 1/hc = 181.75 in Mν and 2L =
3(2/ f ) = 78 and 1/hc = 175.75 in Mμ.

the LK formula because there is only one electron pocket in
Fig. 2(c). In the network model [19–21], it is considered as an
electron’s effective closed orbital motion with the area Ae/2
by the tunneling thorough the narrow neck in the presence of
a magnetic field. Similarly, it is understood that the peaks at
3 fe/2, 5 fe/2, and 7 fe/2 are due to the tunneling.

(a)

(b)

(c)

FIG. 11. Mν drawn by Eq. (F7), where we use α = 0.000 116 and
β = 0.000 064 in (a), α = 0.000 135 and β = 0.000 064 in (b), and
α = 0.000 148 and β = 0.000 105 in (c). We determine α and β from
Figs. 7(a), 8(a), and 9(a), respectively.

From Figs. 7(b) and 8(b) (at the Lifshitz transition point),
we can see that the magnetizations are almost periodic as
a function of 1/h. It can be understood from the above-
mentioned fact that the magnitudes of the tunneling barrier
on the Fermi surface is almost zero as shown in Fig. 2(b).
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(a)

(b)

(c)

FIG. 12. Mμ drawn by Eq. (F11) where we use p0 = 0.1 in
(a), p0 = 0.25 in (b), and p0 = 0.40 in (c). We determine p0 from
Figs. 7(b), 8(b), and 9(b), respectively.

To obtain the similar wave forms of Mν and Mμ in Figs. 7–
9, we propose Eq. (F1) with Eqs. (F8)–(F10) for Mν and
Eq. (F1) with Eq. (F13) for Mμ, respectively, which are ex-
plained in Appendix F. The wave forms by these equations

(a)

(b)

FIG. 13. The filling dependences of the FTIs at P = 5.0
where the range of the Fourier transform is 2L = 4(2/ fe) =
120, 118, 116, 114, 112, 110, 108, 106, 104, and 1/hc = 200
in the 0.766 67, 0.767 05, 0.767 24, 0.767 44, 0.767 86, 0.768 29,
0.768 52, and 0.769 23 fillings.

are shown in Figs. 11 and 12, which express the wave forms
of Figs. 7(a), 8(a), 9(a), 7(b), 8(b), and 9(b), respectively.

Next, we consider the filling dependences of the
FTIs where the finite range of the Fourier transform
is 2L = 4(2/ fe). The filling dependences of the FTIs at
fe/2, fe, 3 fe/2, 2 fe, 5 fe/2, and 3 fe in Mν and Mμ are
shown in Figs. 13(a) and 13(b), respectively. The filling de-
pendences of the FTIs in Mν are quite different from those in
Mμ. Note that at the Lifshitz transition (0.767 86 filling) the
3/2 and 5/2 times frequencies in Mν are not enhanced in this
system, although in the compensated metal these frequencies
are enhanced [12].

V. CONCLUSIONS

We have calculated the dHvA oscillations in the two-
dimensional system with Dirac cones at T = 0 numerically.
By increasing the electron filling ν, the Lifshitz transition
occurs from two electron pockets to one electron pocket. Since
we ignore the effect of the spin, the dHvA oscillations in this
paper are caused by the Landau levels due to an electron’s
orbital motion. When two electron pockets with the same area
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exist at a far distance or there is only one electron pocket with
a not narrow neck, the wave forms of the dHvA oscillations
in Mν (under the condition of the fixed electron filling) and
Mμ (under the condition of the fixed chemical potential) are
almost simple sawtooth and these are inverted each other.
These properties have been known well.

Near the Lifshitz transition of Fig. 2, however, we find very
interesting features in the wave forms of the dHvA oscillations
in Mν and Mμ. The additional center jump in the fundamental
period of 2/ fe exists in Mν and its jump always locates at
the center in the fundamental period even when the magnetic
field and the filling are changed. The center jump is larger
as the electron filling increases. On the other hand, in Mμ

a jump is separated into a pair of jumps and its separation
position varies continuously as the electron filling is changed.
These are caused by the lifting of doubly degenerated Landau
levels which comes from the field-induced quantum tunnel-
ing. These phenomena in the dHvA oscillations have never
been known. We propose the model which shows the similar
dHvA oscillations near the Lifshitz transition [Eq. (F1) with
Eqs. (F8)–(F10) for Mν and Eq. (F1) with Eq. (F13) for Mμ],
respectively.

At the Lifshitz transition point, we also find some fea-
tures. The 3/2 times and 5/2 times frequencies in Mν are
not enhanced, although the enhancements are seen in the
compensated metal [12]. The dHvA oscillations in Mν and Mμ

are almost periodic as a function of the inverse of the magnetic
field because of the smallness of tunneling barrier.

In this paper, from the numerical approaches we make
clear the influence which the lifting of the double degenerate
Landau levels gives to the dHvA oscillations as a first step.
In the next step, the Landau levels and the condition of the
appearance of that lifting have to be obtained (for example,
by the WKB approximation when the potential barrier is
high, i.e., when the system is far from the Lifshitz transition)
because these are useful to the study the dHvA oscillations
near the Lifshitz transition in two-dimensional Dirac fermion
systems (for example, we may predict the magnetic-field
strength when the additional center jump in Mν begins to
appear). However, it may not be easy to obtain these in the
systems with the field-induced quantum tunneling since the
Landau levels in semi-Dirac [54] and in three-quarter Dirac
[55] where there is no the field-induced quantum tunneling,
have been obtained from the careful studies. Therefore, these
will be studied in future.

If the spin of an electron is considered, the Landau levels
are separated due to the Zeeman term. That separation be-
comes larger as the magnetic field increases. By the Zeeman
term, it is expected that an additional center jump appears in
Mν , and a jump is separated into a pair of jumps in Mμ in the
free-electron model [56]. However, when the spacing of the
Landau levels is much larger than that of the spin splitting,
the effect of spin can be ignored. In this paper, we perform
the study in the simple spinless case as the first step. Since
the effect of spin is interesting, the study including the spin
splitting in the lifting of the doubly degenerated Landau levels
is needed in future.

Since the results in this paper are obtained in the ideal
conditions (T = 0, spinless, and no impurity), it is difficult
to confirm experimentally our results in α-(BEDT-TTF)2I3

under the doping and finite temperatures where the sawtooth
wave form becomes broadening due to the thermal broadening
[1], impurity effect [1], and so on. It has been known that
the disorder can diminish the distinction between the wave
form in the canonical and grand canonical ensembles [57].
Furthermore, the effect of the spin splitting may appear. On
the other hand, in the doping two-dimensional Dirac fermion
systems with the small effective mass we expect that the
continuous changes in the magnitude of the center jump in
Fig. 11 and the spacing of the separated jump in Fig. 12 upon
varying dopings may be observed qualitatively.

Although the calculations in the paper are performed in
α-(BEDT-TTF)2I3 under the doping, we expect that the ob-
tained results will be widely observed in the system, for
example, such as the doped graphene under the uniaxial strain
[13,14], black phosphorus [15], and twisted bilayer graphene
[16,17] where two Dirac points exist near each other in the
momentum space. This is because the results provided by this
paper are attributed to only the lifting of doubly degenerated
Landau levels and the similar lifting appears in that system
(for example, it is clearly seen in energies under the magnetic
field in the graphene with the anisotropic transfer integral
[10]).
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APPENDIX A: LIFSHITZ AND KOSEVICH FORMULA

Although the magnetizations should be calculated under
the condition of the fixed electron number or the fixed electron
filling ν (canonical ensemble), Lifshitz and Kosevich [18]
have calculated it under the condition of the fixed chemical
potential μ (grand canonical ensemble). This is because the
calculation in the grand canonical ensemble is justified if μ

depends on the magnetic field less.
They have derived the LK formulas [18] for the free-

electron model by using the semiclassical quantization rule
[3]. Recently, it has been also shown that the LK formula
can be used for the Dirac fermions [58–60]. The LK formula
at T = 0 for the two-dimensional multiclosed Fermi surface
with area (Ai ) is given by

MLK = M0

∑
i

Ãi

∞∑
l=1

1

l
sin

[
2π l

(
Fi

H
− γi

)]
, (A1)

M0 = − e

2π2ch̄
, (A2)

Ãi = |Ai|
∂Ai (ε0 )

∂ε0

∣∣
ε0=μ

, (A3)

where i is the index for the closed orbit and the frequency (Fi)
is given by

Fi = ch̄|Ai|
2πe

, (A4)

where Ai > 0 and Ai < 0 are for the electron pocket and for
the hole pocket, respectively. In this paper, we consider only
the case where one electron pocket or two electron pockets

085412-10



DE HAAS–VAN ALPHEN OSCILLATIONS NEAR THE … PHYSICAL REVIEW B 104, 085412 (2021)

exist. When we use h instead of H in Eq. (A1), we get

Fi

H
= fi

h
, (A5)

where

fi = |Ai|
ABZ

. (A6)

In Eq. (A1), γi is the phase of the oscillation, which comes
from the phase of the Landau levels. When we consider the
case of one electron pocket with the area of Ae and the phase
γe, Eq. (A1) becomes

MLK = M0Ãe

∞∑
l=1

1

l
sin

[
2π l

(
fe

h
− γe

)]
. (A7)

Under the condition of the fixed ν, the highest Landau
level is partially filled, i.e., μ is pinned at the Landau level
at T = 0 as shown in Fig. 14(a), where the Landau levels
for a free-electron pocket are used. As the magnetic field is
increased, the degeneracy of each Landau level increases, and
μ jumps periodically as a function of 1/H . These jumps are
the origins of the dHvA oscillations as shown in Fig. 14(a).
Under the condition of the fixed μ, the Landau levels and
μ cross periodically. Then, the dHvA oscillations appear as
shown in Fig. 14(b). The wave forms of the dHvA oscillations
in Mν and Mμ are the simple sawtooth pattern and these are
inverted each other.

APPENDIX B: SEMICLASSICAL LANDAU
QUANTIZATION OF ENERGY

When the uniform magnetic field is applied to perpendic-
ular to the two-dimensional plane, the energies of the closed
orbit in the wave-number space are quantized as εn with inte-
ger n. In the semiclassical quantization rule [3], the quantized
energies are given by

A(εn) = (n + γ )
2πeH

h̄c
, (B1)

where A(εn) is the area of the closed orbit at H = 0, e is
the electron charge, c is the speed of light, h̄ is the Planck
constant divided by 2π , and γ is a phase factor, which is
related to the Berry phase [61,62]. To obtain the phase factor,
the quantum-mechanical calculations are needed. For the free-
electron model and the Dirac fermions, γ = 1/2, and γ = 0
have been obtained, respectively.

APPENDIX C: ANALYTICALLY DERIVED
LANDAU LEVELS

The Landau levels are analytically obtained as

ε(free)
n ∝

(
n + 1

2

)
H, n = 0–2 (C1)

for two-dimensional free electrons [1,2] and

ε(Dirac)
n ∝ ±

√
|n|H, n = 0–2, . . . (C2)

for massless Dirac fermions (graphene [63,64] and
α-(BEDT-TTF)2I3 [65,66] where the linearization of the

(a)

1/fe

H
0

1/H
0

H

ε

μ
n=0 

n=1 n=2

fixed ν

Mν

Mν

(b)

1/fe

H

Mμ
0

1/H
0

H

ε

μ

n=0 
n=1 n=2

fixed  

Mμ

FIG. 14. In the two-dimensional system with a free electron
pocket, schematics of the Landau levels (red lines), the chemical
potential (blue lines), and the dHvA oscillations (black lines). (a) and
(b) are for the conditions of the fixed electron number and of the fixed
chemical potential, respectively.

energy dispersion has been performed). The dispersion is
quadratic along one axis (two directions, plus and minus
directions) and linear along one axis (two directions) when
two Dirac points merge at a time-reversal invariant point [13].
That system is called the semi-Dirac system, and the Landau
levels are given by [54]

ε(semi-Dirac)
n ∝ ±g(n)

[(
n + 1

2

)
H

]2/3
, n = 0–2, . . . , (C3)

where g(0) � 0.808, g(±1) � 0.994, and g(n) � 1 for
|n| � 2.

Very recently, we have found that the Dirac cone is
tilted critically at the critical pressure (2.3 kbars) in α-
(BEDT-TTF)2I3 where the linear term disappears and the
quadratic term becomes dominant in one direction, whereas
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the linear term is finite in other three directions. This system
is a three-quarter Dirac system [9]. We have also obtained that
the Landau levels are given by [9,55]

ε(tq-Dirac)
n ∝ (nH )4/5, n = 0,±1,±2, . . . . (C4)

Furthermore, when the Dirac cone is tilted horizontally, such
as the type-III Weyl semimetals [67], we have shown that the
Landau levels are given by [9]

ε(type III)
n ∝ [(n + 1)H]2, n = 0–2, . . . . (C5)

APPENDIX D: TOTAL ENERGIES AND
MAGNETIZATIONS

At T = 0, the total energy (Eν) under the condition of the
fixed electron number [i.e., the fixed electron filling (ν)] is
calculated by

Eν = 1

4qNk

4qNkν∑
i=1

ε(i, k), (D1)

where Nk is the number of k points taken in the magnetic
Brillouin zone. In this system, ν = 3/4.

The total energy (Eμ) under the condition of fixed μ is
calculated by

Eμ = 1

4qNk

∑
ε(i,k)�μ

[ε(i, k) − μ], (D2)

where 4q is the number of bands in the presence of the mag-
netic field and ε(i, k) is the eigenvalues of 4q × 4q matrix.
The fixed chemical potential in Eq. (D2) is given by

μ = ε0
F, (D3)

where ε0
F is the Fermi energy at h = 0.

The magnetizations for fixed ν and fixed μ are numerically
calculated by

Mν = −∂Eν

∂h
, (D4)

Mμ = −∂Eμ

∂h
, (D5)

respectively. If the h dependence of μ is negligibly small, we
obtain

Mν = Mμ. (D6)

APPENDIX E: FOURIER TRANSFORM INTENSITIES

In order to analyze the oscillations in the magnetizations,
we calculate the Fourier-transform intensities numerically as
follows. By choosing the center (hc) and the finite range (2L),
we calculate

FTI

(
f ,

1

hc
, L

)
=

∣∣∣∣ 1

2L

∫ (1/hc )+L

(1/hc )−L
M(h)e2π i( f /h)d

(
1

h

)∣∣∣∣2

,

(E1)

where we take f = j/(2L) with integer j (0 � j � 256 is
used in this paper). We take the finite range as 2L = 3(2/ fe)
in Fig. 10 and 2L = 4(2/ fe) in Fig. 13, respectively.

APPENDIX F: AMPLITUDES OF FOURIER
COEFFICIENTS OF THE MODIFIED SAWTOOTH MODEL

The periodical function, M(x), with frequency f /2 is given
by the Fourier series as

M(x) = a0

2
+

∞∑
�=1

[
a� cos

(
2π�

f

2
x

)
+ b� sin

(
2π�

f

2
x

)]
,

(F1)
where a0, a�, and b� are the Fourier coefficients. The FTIs of
M(x) become

a2
0

4
, if � = 0,

a2
� + b2

�, if � = 1–3, . . . . (F2)

The sawtooth dependence with period 1/( f /2) of the mag-
netizations as a function of 1/h = x is given by

M0(x) = αx, if − 1

f
< x <

1

f
, (F3)

and

M0(x) = M0

(
x + 2m

f

)
, m = ±1,±2, . . . , (F4)

where the coefficients a� and b� are given by

a0 = a� = 0, (F5)

b� = − 2α

π f �
cos(π�). (F6)

The h dependence of Eq. (F1) corresponds to that of Eq. (A7).
To obtain the similar wave form of Mν in this paper

[Figs. 7(a), 8(a), and 9(a)], we introduce the modified saw-
tooth model as

Mν (x) =
{

−αx − m0, if − 1
f < x < 0,

−βx + m0, if 0 < x < 1
f

, (F7)

where α > 0 and β > 0. Then, we obtain the Fourier coeffi-
cients as

a0 = α − β

2 f
, (F8)

a� = α − β

π2 f �2
[cos(π�) − 1], (F9)

and

b� = 2 f m0 + (α + β − 2 f m0) cos(π�)

π f �
. (F10)

Note that the equation for Mν has a0 and a� of the cosine
coefficients which are not included in the LK formula.

For Mμ, we propose as the following modified sawtooth
model,

Mμ(x) =
{

α′x, if − p0

f < x <
p0

f ,

α′(x − 1
f

)
, if p0

f < x <
2−p0

f .
(F11)
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When p0 = 0.083, the fundamental period [1/( f /2)] is di-
vided into 0.083[1/( f /2)] and 0.917[1/( f /2)] as shown in
Fig. 12(a). Similarly, in the cases of p0 = 0.25 and p0 =
0.40, the fundamental periods are divided into 0.25[1/( f /2)]
and 0.75[1/( f /2)] [see Fig. 12(b)] and 0.40[1/( f /2)] and
0.60[1/( f /2)] [see Fig. 12(c)], respectively. These describe
the similar wave forms of Mμ in Figs. 7(b), 8(b), and 9(b),
respectively.

From the Fourier transform of Eq. (F11), we obtain the
Fourier coefficients as

a0 = a� = 0, (F12)

and

b� = − 2α′

π f �
cos(π�p0). (F13)
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