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Abstract

High mobility group AT-hook 2 (Hmga2) is a chromatin modifier protein that plays a critical role in fetal
development and leukemia propagation by binding to chromatin and DNA via its AT-hook domains.
However, the molecular mechanisms by which Hmga2 activates the expression of target genes to
drive the self-renewal of hematopoietic stem cells (HSCs) remain unclear. We generated Rosa26
locus Hmga2 conditional knock-in mice and found that overexpression of Hmga2 promoted self-
renewal of normal HSCs, but maintained their fitness in bone marrow, and consequently was not
sufficient to initiate malignancy. This result is consistent with previous findings showing that Hmgaz2 is
a proto-oncogene. We also assessed the cellular functions of Hmga2 mutants lacking functional
domains and demonstrated that the C-terminus acidic domain of Hmga2 and the domain’s linker
region were critical for activating genes involved in stem cell signatures, such as the ;’gf2bp2 gene, to
drive proliferation of HSCs. In contrast, overexpression of Hmga1, a member of the Hmga family with
a different linker region, did not drive proliferation of HSCs. Our results reveal a critical role for the
acidic domain of Hmga2 and the domain's linker region in modulating the transcription and self-

renewal functions of HSCs.
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Introduction
High mobility group (HMG) proteins are non-histone chromosomal proteins that are classified into
three subtypes: HMGA, HMGB, and HMGN. The HMGA (High mobility group AT-hook) family is
composed of four proteins: HMGA1a, HMGA1b, HMGA1c, and HMGAZ2, which bind to the minor
groove of the AT-rich sequences of DNA through three AT-hook domains in the N-terminus and
mediate various functions on DNA for transcription, replication, and repair (1,2). HMGA proteins
contain the C-terminus acidic domain, which may modulate transcriptional properties via its structural
flexibility based on previous findings on the acidic domains of HMGB ;ﬁroteins (3,4). HMGA proteins
have also been shown to open compacted chromatin by competing with linker-histone H1 in order to
activate the transcription of target genes. Hmga2 expression is robustly elevated by the Lin28b-Let-7
axis in fetal hematopoietic stem cells (HSCs), being higher than that in adult HSCs, but is suppressed
during the differentiation by polycomb repressive complexes 2 (5). The ectopic expression of Hmga2
by a retrovirus vector enhanced the self-renewal capacity of HSCs, but also promoted the production
of megakaryocytes and erythroid cells in adult hematopoiesis (6,7). The constitutive activation of
Hmga2 was consistently induced in a transgenic mouse model of Hmga2 cDNA lacking the 3’
untranslated region (UTR), which contained the Let-7 miRNA target sequences, and a mild
myeloproliferative phenotype was observed (8). We recently demonstrated that the ectopic
expression of Hmga2 retrovirally in HSCs did not result in the development of malignancies in mice,
whereas HmgaZ2-overexpressing Tet2-deficient mice showed the enhanced proliferation of
hematopoietic stem and progenitor cells (HSPCs), which ultimately led to myeloid malignancies (9).
The overexpression of Hmga2 increased the self-renewal capacity of both normal and malignant stem
cells; however, the molecular mechanisms by which Hmgaz2 drives the self-renewal capacity of HSCs
have not yet been elucidated.

To clarify the functions of Hmga2 in HSCs, we initially generated a new conditional knock-in
(KI) of Hmga2 cDNA that lacks its 3'UTR to the Rosa 26 locus in mice and then investigated the
molecular mechanisms by which domains and regions in the Hmga2 protein contribute to the
transcriptional activation of stem cell genes, such as /gf2bp2. We herein demonstrated that the
overexpression of Hmga2 promoted the expansion of stem cells, but maintained their fitness in bone
marrow; therefore, it was not sufficient for the development of malignant diseases in mice. Since

three AT-hooks in Hmga proteins were required for the appropriate regulation of Hmga2 for its binding
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to and the transcription of target genes (10,11), the deletion of the first AT-hook compromised the
activation of the /gf2bp2 gene. Notably, we also showed that the C-terminus acidic domain and its
linker region, comprising eleven amino acids, in Hmga2 were required for the full activation of Igf2bp2

expression in order to drive the proliferation of HSCs in vitro.

Methods

Mice

The Rosa26-flox-stop-flox-HA-Hmga2-eGFP conditional KI mouse line was generated using C57BL/6
ES cells at the Institute of Resource of Development and Analysis, Kumamoto University. HA-tagged
Hmga2 cDNA lacking the 3'UTR, which was generated by PCR using the mRNA of wild-type murine
fetal blood cells, was inserted into the STOP-eGFP-ROSA26TV vector gifted from Dr. Klaus Rajewsky
(Addgene plasmid # 1173). Hmga2-Kl mice and Rosa26-flox-stop-flox-EYFP Kl mice (12) were
crossed with enhancer of Runx1-CreERT2 (eR1-CreERT2) transgenic mice provided by Dr. Motomi
Osato (13) or Rosa26 Cre-ERT2 Kl mice (Taconic). Two milligrams of tamoxifen (T5648, Sigma-
Aldrich) was intraperitoneally injected on 5 consecutive days to delete the floxed stop element.
C57BL/6 mice congenic for the Ly5 locus (CD45.1) were purchased from Sankyo-Lab Service. All
mice were maintained on the C57BL/6 background. Age-matched female mice were used for donors
and recipients in transplantation experiments. All experiments using these mice were performed in
accordance with our institutional guidelines for the use of laboratory animals and approved by the

Review Board for Animal Experiments of Kumamoto University (Kumamoto, Japan).

Quantitative RT-PCR, genomic PCR, immunofluorescence (IF), and Western blotting

Total RNA was extracted using ISOGEN (Nippon Gene), and cDNA was synthesized using the
ProtoScript |l First Strand cDNA Synthesis Kit (New England Biolabs) with an oligo-dT primer.
Quantitative-RT-PCR was performed on LightCycler 480 (Roche) using Luna Universal gPCR Master
Mix (New England Biolabs). Expression levels were normalized to those of ACTB/B-actin. Primers for
RT-PCR and genomic PCR are listed in Supplementary Table 1. |F was performed using the
BDCytofix/Cytoperm™ Fixation/Permeabilization Kit (BD). |IF and Western blotting used the following
antibodies: Hmga2 (CST, 5269S), FLAG (Sigma, M2), DYKDDDDK tag (Wako, 1E6), HA (Santa Cruz,

12CAD5), Histone H3 (Abcam, ab1791), and actin (Santa Cruz, C4).
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Cells
293T and Jurkat cell lines were cultured in DMEM or RPMI1640 containing 10% fetal bovine serum
(FBS), respectively, in a humidified incubator. The 293GPG cell line was kindly provided by Dr.

Mulligan (14).

Retrovirus vectors and transduction

FLAG-tagged Hmga2 and Hmga1 cDNAs were inserted into the pGC-DN-sam-!RES-NGFR retrovirus
vector. Deletion mutants of Hmga2 were subcloned from the Hmga2 virus vector. Virus supernatant
(VSV-G pseudotyped retroviral supernatant) was prepared by transfecting 293GPG cells with an
empty control or the Hmga2 retrovirus vector plasmid using the calcium phosphate transfection
method. Virus vector transduction was performed as previously described (15). Briefly, virus
supernatant was concentrated by centrifugation and the titers of retroviral supernatants were
assessed by utilizing the Jurkat cells. Hematopoietic cells isolated from male mice were infected with
the virus supernatant in 10 pg/mL protamine sulfate and 10 ng/mL RetroNectin (Takara), and were
further cultured in SF-03 medium (lwai North America) supplemented with 1% FBS, 100 ng/mL mouse

stem cell factor (SCF; PeproTech), and 100 ng/mL human thrombopoietin (TPO; PeproTech) (15).

Flow cytometry and antibodies

Flow cytometry and cell sorting were performed using the following antibodies (clone and catalogue
numbers): CD45.2 (104, 109820), CD45.1 (A20, 110730), Gr1 (RB6-8C5, 108404), CD11b/Mac
(M1/70, 101208), Ter119 (116204), CD127/IL-7Ra (A7R34, 121104), B220 (RA3-6B2, 103212), CD4
(L3T4, 100526), CD8a (53-6.7, 100714), CD117/c-Kit (2B8, 105812), Sca-1 (D7, 108114), CD34
(MEC14.7, 11-0341-85), CD150 (TC15-12F12.2, 115924), CD135 (A2F10, 135306), CD48 (HM48-1,
103433), CD41(MWReg30, 133915), FcyRII-II (93, 101308), and NGFR (ME20.4, 345110). These
antibodies were purchased from BioLegend or eBioscience. The lineage mixture solution contained
biotin-conjugated anti-Gr1, B220, CD4, CD8a, Ter119, and IL-7Ra antibodies. All flow cytometric

analyses and cell sorting were performed on FACSAriall or FACSCantoll (BD).

RNA sequencing
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RNA isolation, cDNA library preparation and sequencing were performed as previously described
(15). Kallisto (version 0.43.1) was used for read counts and the calculation of transcripts per million.
RNA sequencing data have been deposited in the DDBJ under the accession number: DRA013143

(Supplementary Dataset 1).

Results

Hmga2 conditional KI mice showed the enhanced expression of Hmga2 in adult HSCs

To assess the cellular function of the overexpression of Hmga2 in adult HSCs, we selected the
RosaZ26 locus to generate a new conditional KI mouse line carrying a heterozygous allele of Rosa26-
loxP-STOP-loxP-HA-tag-Hmga2-IRES-EGFP (Figure 1A, 1B), the Hmga2 cDNA sequence of which
did not contain 3' UTR of the Hmga2 gene harboring the Let7 miRNA target sequences. The
established Hmga2 Kl mouse lines were crossed with eR7-CreERT2 transgenic mice, which
dominantly induced Cre recombinase expression in HSPCs upon the intraperitoneal administration of
tamoxifen to mice (13). We confirmed the up-regulated expression of the Hmga2 protein in lineage-c-
Kit* bone marrow cells isolated from two Hmga2 Kl; eR1-CreERT2 mouse lines (clone #30 and #33)
one month after the treatment with tamoxifen, but negligible levels in wild-type counterpart cells using
a Western blot analysis with the anti-HA or anti-Hmga2 antibody (Figure 1C). We subsequently
examined clone #30. Quantitative-RT-PCR (Q-PCR) revealed that Hmga2 K| HSCs had significantly
increased expression of Hmga2, which was higher than that in wild-type fetal HSCs, while control
HSCs showed a lower expression of Hmga2 (Figure 1D). Therefore, we successfully generated
Hmga2 Kl; eR1-CreERT2 mice overexpressing Hmga2 at both the mRNA and protein levels in

immature blood cells, including HSCs.

Hmga2 overexpression enhanced the hematopoiesis but maintained the fitness in bone
marrow

To assess the blood cell-specific effects of the overexpression of Hmga2 in mice, we transplanted
bone marrow cells isolated from Hmga2 Kl; eR1-CreERT2 mice and Rosa26-loxP-STOP-loxP-EYFP;
eR1-CreERT2 mice, referred to as YFP Kl mice, into lethally-irradiated congenic Ly5.1+ wild-type
recipient mice. One month after transplantation, tamoxifen was intraperitoneally administered to

mice for five days in order to induce the expression of Cre recombinase in blood cells (Figure 2A).
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The induction efficacies of Hmga2-IRES-EGFP or EYFP in HSPCs in bone marrow 48 hours after a
single injection of tamoxifen were examined using flow cytometry. Hmga2 Kl cells showed similar
induction efficacies in HSCs and multipotent progenitor (MPP1-4) cells (16) to those in YFP Kl cells
(Figure 2B). Ten months after transplantation, Hmga2 KI mice showed similar complete blood cell
counts and proportions of myeloid and B- and T-lymphoid cells in peripheral blood (PB) to those in
YFP K| mice (Figure 2C, 2D). Total BM cell numbers (Figure 2E) and HSCs and MPPs (MPP1-4) in
BM were similar between Hmga2 KI mice and control YFP Kl mice (Figure 2F); however, Hmga2 KI
mice showed significantly higher frequencies of GFP-positive cells within HSCs, MPP1-4 and myeloid
progenitor cells (17) than YFP-positive cells in control mice one year after transplantation (Figure 2G,
2H). Hmga2 Kl mice consistently showed gradual and significant increases in GFP-positive cell
proportions in myeloid cells, B cells, and platelets (Supplementary Figure 1), while control YFP KiI
mice sustained the YFP proportion in mature cells in PB and in HSCs in BM at similar levels to those
observed in the initial induction period at 48 hours (Supplementary Figure 2). Based on
extramedullary hematopoiesis in a Hmga2 transgenic mouse as previously reported (8), we
performed phenotypic analyses on the spleen and liver in Hmga2 Kl mice. Hmga2 Kl mice showed
similar weight of the spleen and liver to those in YFP Kl mice (Figure 21, 2J). Histological analyses
revealed a very mild increase in the area of red pulp in the spleen of Hmga2 Kl mice without the
development of evident hematological malignancies (Figure 2K), thereby, we observed both genotype
mice showed similar survival outcomes (Supplementary Figure 3). Therefore, the overexpression of

Hmga2 promoted the hematopoiesis, but maintained the fitness in PB and BM in mice.

Hmga2 overexpression increased expression of Igf2bp2 target genes and enhanced the self-
renewal capacity of stem cells

To assess the self-renewal capacity of Hmga2-over-expressing HSC, we performed serial
transplantation using 1000 Lineage Sca-1*c-Kit* (LSK) cells isolated from primary transplanted mice
and freshly isolated 2x10° Ly5.1+ wild-type BM cells, and found that Hmga2 Kl; Cre-ERT2 cells
significantly increased the competitive repopulating capacities of HSPCs and myeloid progenitor cells
over those of control Cre-ERT2 cells (Figure 3A and Supplementary Figure 4). Thus, the
overexpression of Hmga2 enhanced the self-renewal capacity of stem cells in an in vivo condition.

To elucidate the mechanisms underlying the enhanced self-renewal capacity of Hmga2-over-
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expressing stem cells, we performed RNA sequencing analyses of CD150*CD48-CD34-CD135LSK
HSCs isolated from HmgaZ2 Kl; Cre-ERT2 mice and control Cre-ERT2 mice 2 months after
transplantation. We observed 326 up-regulated genes and 339 down-regulated genes by more than
2-fold change in Hmga2 Kl HSCs from those in control HSCs (Supplementary Dataset 2). Among
those up-regulated genes, since Hmga2 bound to a proximal region of /gf2bp2 in HSPCs (9), we
found that the expression levels of Igf2bp2 mRNA in HSCs were significantly higher in Hmga2 Kl mice
than in control mice. Q-PCR confirmed the increased expression of Igf2bp2 in Hmga2 Kl HSCs,
compared to control HSCs (Figure 3B). Agene set enrichment analysis (GSEA) consistently showed
that in comparison with control HSCs, Hmga2 Kl HSCs had significantly positive enrichments in
lgf2bp2 target genes (Figure 3C), which were defined in K562 leukemic cells and 293T cancer cells
(18)(19). IGF2BP2 has been shown to stabilize MYC mRNA and activate expression of MYC-target
genes in epithelial cancer cells (19); however, Q-PCR revealed that Hmga2 KI HSCs showed similar
expression of Myc mRNA to that in control HSCs (Figure 3D). By performing GSEA, we also found
that in comparison with control HSCs, Hmga2 Kl HSCs did not have significant changes in MYC
hallmark target genes (Figure 3E), indicating that the activation of Myc and its target genes did not
appear to contribute to the enhanced self-renewal of Hmga2 Kl HSCs. Nonetheless, the over-
expression of Hmga2 enhanced the self-renewal capacity of stem cells accompanied with enhanced

expression of Igf2bp2 target genes.

Hmga2 mutants lacking N- and C-terminus domains were expressed in the nucleus

Hmga proteins harbor three AT-hook domains to bind to DNA and modulate the transcription of target
genes, but differ in their linker regions (Figure 4A). To identify which domains of the Hmgaz2 protein
are contributing to the competitive repopulation of HSCs, we generated truncated mutants of the
Hmga2 protein by deleting either its N- or C-terminus, which were tagged by the FLAG sequence
(Figure 4B). Hmga1, a member of the Hmga family, is expressed in adult HSCs (16). We also
generated an expression vector of full-length Hmga1a cDNA harboring distinct sequences at linker
regions between AT-hooks and the acidic domain (Figure 4A, 4B). The transfection of these mutants
into 293T human kidney cells confirmed the clear induction of these Hmga2 mutants expressing the
expected sizes of their proteins in transfected cells (Figure 4C). To assess the distribution of Hmga2-

mutant proteins in cells, we performed IF assays using Hmga2 mutant-transduced Jurkat human
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leukemia cells (Figure 4D). The IF assay revealed that all mutants of and wild-type Hmga2 and
Hmga1 were dominantly expressed in the nucleus, whereas the Hmga2-A1-45 mutant lacking the first
AT-hook showed markedly lower expression in cells, presumably due to its impaired affinity to

chromatin and DNA.

Hmga2 overexpression required its N- and C-terminus domains to activate Igf2bp2

We then examined the cellular function of Hmga2 mutant-transduced HSCs under in vitro conditions
supplemented with SCF and TPO to maintain the immature phenotype of hematopoietic cells.
Consistent with previous findings showing the enhanced self-renewal property of Hmga2 in stem cells
(20), the transduction of wild-type Hmga2 markedly increased the size of colonies and cell numbers,
while that of Hmga1 did not increase cell numbers in a six-day culture, similar to cells transduced with
the control empty vector (Figure 5A, 5B). We found that Hmga2-A1-45 lacking the first AT-hook and
Hmga2-A83-108 lacking the C-terminus region did not expand cell numbers, while the Hmga2-A1-25
mutant and Hmga2-A94-108 lacking only the acidic domain induced the mild expansion of transduced
HSCs (Figure 5A). These results indicated that the first AT-hook and the linker region (83-93aa)
together with the acidic domain are required for the enhanced self-renewal property of HmgaZ2 in stem
cells. The acidic domain promotes the expansion of HSCs and requires the linker regions for the
further expansion of stem cells, at least under in vitro conditions.

In in vitro experiments using Hmga2 mutants, we observed similar Hmga2 mRNA expression
levels in all mutant-transduced blood cells (Figure 5C), which was consistent with the similar
expression levels of Hmga2 mutant proteins transfected in 293T cells (Figure 4C). Consistent with
the increased expression of Igf2bp2 in Hmga2 KI HSCs (Figure 3B), we also showed that /gf2bp2
expression levels were significantly higher in full-length Hmga2, Hmga2-A1-25, and Hmga2-A94-108
than in control cells; however, the increased expression of the /gf2bp2 gene was abrogated in the
Hmga2-A1-45 and ngéZ-ASS-‘lOB mutants (Figure 5D), leading to impairments in the expansion of
stem cells transduced by these Hmga2 mutants lacking the N- or C-terminus (Figure 5A). AT-hook
domains were highly conserved in the Hmga1 and Hmga2 proteins, whereas their linker regions
differed (Figure 4A). The overexpression of Hmga1 did not up-regulate the expression of Igf2bp2 in
blood cells (Figure 5D), which supports the linker region at 83-93aa in the HmgaZ2 protein, which is not

shared by the Hmga1 protein, being critical for the transcriptional activator property of Hgmaz2.
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Therefore, the overexpression of Hmga2 required its three AT-hooks and the C-terminus linker region

to activate the transcription of /gf2bp2 and promote the self-renewal function of HSCs.

Discussion

In the present study, we successfully generated a new HmgaZ conditional KI mouse with the up-
regulated expression of the /gf2bp2 gene, which is known to be highly expressed in fetal HSCs.
IGF2BP2 recognizes m6A-modified RNAs to promote the stability and translation of target mMRNAs
and protect mMRNAs from Let-7 miRNA-mediated degradation (21). In human cancer cells, HMGA2
has been shown to activate the transcription of IGF2BP2/IMP2 (22), which functions as an oncogene
to bind to and stabilize MYC mRNA and promote proliferation (19). We consistently demonstrated
that Hmga2 bound to a proximal region of the /gf2bp2 gene and activated the transcription of Igf2bp2
in both normal and Tet2-null HSCs, thereby driving proliferation under in vivo and in vitro conditions
(9). In this study, we demonstrated that the over-expression of Hmga2 did not activate expression of
Myc target genes in wild-type HSCs. The enhanced expression of Myc protein is deleterious to
normal HSCs (23,24), while the blood cell-specific deletion of Myc results in the expansion of HSCs in
part due to blocking the differentiation (25). These findings highlight a context-dependent function of
the Hmga2-Igf2bp2 axis for enhancing the self-renewal of normal and malignant stem cells. Further
studies are needed to elucidate the mechanisms by which the Hmga2-1gf2bp2 axis regulates target
genes and enhances the self-renewal capacity of normal HSCs in a Myc-independent manner.

A transgenic mouse carrying Hmga2 cDNA lacking the 3'UTR showed myeloproliferative
features including extramedullary hematopoiesis in the spleen (8,26), while we demonstrated that our
RosaZ26 locus HmgaZ2 conditional KI mice, in which HmgaZ2 cDNA lacked the 3'UTR, showed a mild
expansion of red pulp in the spleen without expansion of mature blood cells in the BM and in the PB,
in comparison with the control mice. Those distinct phenotypes by the over-expression of HmgaZ2 in
two models would be caused by differences in a given time point (inducible versus constitutive) and in
a tissue specificity (blood-specific versus whole body).

We demonstrated that the first AT-hook, the acidic domain, and its linker region at 83-93aa in
Hmga2 were critical for activating the expression of /gf2bp2 and enhancing the proliferation of HSCs.
AT-hooks were previously shown to be important for the transcriptional activating property of Hmga2

(1,2), while the transcriptional activity of the linker region of Hmga2 remained largely unknown. In

10
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contrast, the Hmga1 protein lacks the linker region including lysine residues, which may account for
the distinct transcriptional activation of stem cell genes in a manner that is dependent on their
conformational structures for binding to chromatin. Acidic domains were phosphorylated by casein
kinase Il in the HmgaZ2 protein, in which sites were shared in the Hmga1 protein showing different
forms, which modulated DNA-binding capacity in vitro (27). This finding suggests a critical role for the
linker region and the acidic domain in Hmga2 in modulating the transcription of target genes,
presumably due to post-translational modifications in these regions and/or protein-protein interactions
to form protein complexes in HSC in a context-dependent manner. The molecular mechanisms by
which the acidic domain and linker region together modulate the DNA-binding property of the AT-hook
domains of Hmga2, which activates the transcription of target genes in HSCs, will be examined in the

future.
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Figure legends

Figure 1. Generation of conditional Hmga2 knock-in mice

A) Schematic illustration showing the Rosa26 loxP-Stop-loxP HA-tagged Hmga2 IRES-eGFP vector,
wild-type allele, targeted allele, and Cre-excised allele. Arrows indicate primers (#1, #2, #3, and #4)
for genomic PCR performed in panel B to detect the Rosa26 locus knock-in of the vector.

B) Genomic PCR showing targeted alleles in the Rosa26 locus together with the wild-type control.
Arrow heads indicate expected PCR products (2167bp by #1 and #2, 6406bp by #3 and #4).

C) Expression levels of the Hmga2 protein in c-Kit+ bone marrow cells isolated from control eR1-
CreERT2 mice and Hmga2 Kl; eR1-CreERT2 mice (two clones: #30 and #33).

D) Expression levels of Hmga2 mRNA in HSCs isolated from control eR1-CreERT2 mice and Hmga2
KlI; eR1-CreERT2 mice and wild-type fetal liver HSCs (n=6-7) examined by quantitative-PCR. Bars

show the mean & SD, **p<0.01, and ***p<0.001. P-values were calculated by the Student’s i-test.

Figure 2. Hmga2 knock-in mice enhanced the hematopoiesis, but did not develop
malighancies

A) Transplantation assay using BM cells isolated from YFP KI mice and Hmga2 Kl mice

B) Proportion of YFP+ or GFP+ cells in HSCs and MPP1-4 in BM (n=4) 48 hours after the
administration of tamoxifen.

C) Complete blood cell counts (CBC) in the PB of YFP KI mice and Hmga2 Kl mice (n=10) ten
months after transplantation.

D) Proportions of Gr-1*/CD11b* myeloid cells, B220* B cells, and CD4*/CD8* T cells in white blood
cells in the PB of YFP Kl mice and Hmga2 KI mice (n=10) ten months after transplantation.

E) BM cell counts of YFP Kl mice and Hmga2 Kl mice (n=6-8) one year aftér transplantation.

F) Frequencies of HSC and MPP1-4 cells in BM (n=6-8) one year after transplantation.

G) Proportion of YFP+ or GFP+ cells in HSCs and MPP1-4 in the BM of YFP KI mice and Hmga2 Kl
mice (n=6-8) one year after transplantation.

H) Proportion of YFP+ or GFP+ cells in Pre GM, GMP, Pre MegE, Pre CFU-E, and MkP in the BM of
YFP Kl mice and Hmga2 Kl mice (n=6-8) one year after transplantation.

I, J) Weight of liver and spleen in YFP KI mice and HmgaZ2 Kl mice (n=6-8) one year after

transplantation.
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K) Histological analysis showing the spleen in YFP Kl mice and Hmga2 Kl mice observed by
hematoxylin-eosin staining. Scale bars, 500um.
B-J) Bars show the mean £ SD, *p<0.05 and ***p<0.001. P-values were calculated by the Student’s -

test.

Figure 3. Hmga2 knock-in HSCs showed the enhanced expression of Igf2bp2 target genes

A) Proportion of control Cre-ERT2 or Hmga2 Kl; Cre-ERT2 CD45.2* cells in HSCs and MPP1-4 cells
in BM (n=4-5) four months after secondary transplantation.

B) Expression levels of /gf2bp2 mRNA in HSCs in BM isolated from control mice and Hmga2 Kl mice
(n=4) and in wild-type fetal liver HSCs (n=3) examined by quantitative-PCR.

C) GSEA of IGF2BP2 target gene sets, which were defined by more than 3-fold down-regulated
genes in knockdown of the IGF2BP2 gene in K562 and 293T cell lines (linked in GSE80946, 80858
and 90686), in Hmga2 K| HSCs and control HSCs 2 months after transplantation.

D) Expression levels of Myc mRNA in HSCs in BM isolated from control Cre-ERT2 mice and Hmga2
Kl; Cre-ERT2 mice (n=4) examined by quantitative-PCR.

E) GSEA of MYC hallmark target genes sets (V1 and V2) in Hmga2 KI HSCs and control HSCs 2
months after transplantation.

B, D) Bars show the mean + SD, *p<0.05 and ***p<0.001. P-values were calculated by the Student's

{-test.

Figure 4. Generation of Hmga2 mutants lacking the N- and C-terminus domains

A) Amino acid alignment of murine Hmga1a and Hmga2 proteins.

B) lllustration of Hmga1a, the wild type, and mutants of Hmga2 (i.e. A1-25, A1-45, A83-108, and A94-
108) showing the levels of conservation in sequences by distinct colors.

C) Expression levels of the wild type or deletion mutants of Hmga2 and Hmga1la in 293T cells
examined by Western blotting using anti-FLAG and anti-actin antibodies. Actin was used as a loading
control.

D) IF showing the expression of the wild type or deletion mutants of Hmga2 and Hmga1a transduced

in Jurkat leukemia cells examined using an anti-FLAG antibody. DNA was counterstained by DAPI.
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Figure 5. N- and C-terminus domains of Hmga2 were both required to activate Igf2bp2 and
promote the expansion of HSCs

A) Cell counts of wild-type and mutant Hmga2-transduced HSCs after six days in liquid culture.

B) Representative pictures of Hmga2- and empty vector-transduced cells. Scale bars, Tmm.

C, D) Expression levels of Hmga2 and /gf2bp2 in wild-type and mutant Hmga2-transduced HSCs after
six days in liquid culture examined by quantitative-PCR.

A, C, D) Bars show the mean + SD, *p<0.05, **p<0.01, and ***p<0.001. n.s. stands for not significant.

P-values were calculated by the Student’s i-test.

Supplementary information

Supplementary Table 1

Sequences of primes for g-RT-PCR and genomic PCR.

Supplementary Figure 1

Proportions of YFP+ or GFP+ cells in Gr-1*/CD11b* myeloid cells, B220* B cells, CD4*/CD8* T cells,
and CD41* platelets in the PB of YFP K| mice and Hmga2 Kl mice (n=3-5) 9 months after
transplantation.

Supplementary Figure 2

Proportion of YFP+ or GFP+ cells in HSCs and MPP1-4 cells in the BM of YFP Kl mice and Hmga2 Kl
mice (n=4-8) 48 hours (48H) and twelve months (12M) after the tamoxifen treatmen"t.
Supplementary Figure 3

Similar median survivals of YFP Kl mice and Hmga2 Kl mice after transplantation.

Supplementary Figure 4

Proportion of control Cre-ERT2 or Hmga2 Kl; Cre-ERT2 CD45.2* cells in Pre GM, GMP, Pre MegE,
Pre CFU-E, and MKP, in BM (n=4) four months after secondary transplantation.

Supplementary Figure 5

Un-cropped images of PCR gel and Western blotting.

Supplementary Dataset 1

RNA sequencing data list liked in DRA013143.

Supplementary Dataset 2

Up- and down-regulated genes in Hmga2 Kl; Cre-ERT2 HSCs from those in control Cre-ERT2 HSCs.
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