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Introduction

The Hall-Littlewood polynomials Py (t) are a family of symmetric polynomials
indexed by partitions [2]. They are a generalization of the Schur polynomials
having a parameter ¢t. The Macdonald polynomials Py(g,t) are a yet more
generalization having two parameters g and ¢ [3].

There are inner products defined on the space of symmetric polynomials
with which the power sum symmetric polynomials form an orthogonal basis.
These kind of inner products are introduced originally by Redfield [6] and Hall
[1]. One obtains some identities of parameters by calculating the inner products
of some symmetric polynomials.

In this article, we give alternative proofs of the following well-known identi-
ties:
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The identities are immediately obtained by using (2.14’) and Example 5 in the
Chapter I, Section 2 of [4]. We prove them by calculating the inner products of
Hall-Littlewood polynomials and Macdonald polynomials, and by constructing
certain bijections through transforming the Young diagrams of partitions.

This article consists of two sections. In Section 1, we introduce some con-
cepts, and prove the identities in the case ¢ = 0, which have only one parameter
t. The identities in this case are obtained by calculating the inner product
of some symmetric polynomials including the Hall-Littlewood polynomials. In
Section 2, we prove the identities in the general case, which have two parameters
q,t. The identities are obtained from the inner product of symmetric polynomi-
als including the Macdonald polynomials. In each section, we provide a bijective
proof of the identity. In this article, N denotes the set of all non-negative inte-
gers.

1 The case of one parameter

A partition is a weakly decreasing finite series of positive integers. Let &2 denote
the set of all partitions. For A = (A, Ag,..., N) € Z, A= M+ X+ + X\
is called the weight of A and [(\) = [ is the length of A. Write &2, = {\ € & |
I(A) <n}and &, ={ e P |\ <n}. If |\| =n, Ais called a partition of n.
We write A - n if A is a partition of n. Write Z(n) = {A € & | A+ n}.

For A = (A1, Mg, ..., \n) € &, the Young diagram of X is the diagram con-
sisting of [ rows of left-aligned cells, the ith row from the top has \; cells. For
example, (4,3,1) is a partition of 8 and its Young diagram is as follows.




For A = (A, A2, ..., N) € P and i > 1, m;(X) = #{j | \; = i} is called the
multiplicity of ¢ in A. A partition A € & is also written as A = (17”1()‘)27”2()‘) e )
by using the multiplicities. We define
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It is easy to see that ey = 1 if a permutation with cycle type A is even, and that
€x = —1 if the permutation is odd.
Here are the theorems we prove in this section:

Theorem 1.1. For n € N| the following formula holds as an identity of formal

power series of t:
n
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Theorem 1.2. For n € N, the following formula holds as an identity of formal
power series of t:
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It is also shown that the both sides of the equations of Theorem 1.1 and
1.2 are equal to the inner product of the elementary symmetric polynomials
{€(n)> €(n))t, and the inner product of the elementary symmetric polynomial
and the complete symmetric polynomial (e, h(n))t, respectively.

1.1 Proof of Theorem 1.1 and 1.2 using symmetric poly-
nomials

In this section we give a proof of Theorem 1.1 and 1.2 using symmetric polyno-
mials. We fix a non-negative integer n € N. The symmetric group &,, acts on
the polynomial ring Q[z1, 22, . .., z,] by permuting the variables. A polynomial
in Q[x1,x2,...,x,] is called symmetric if it is invariant under this action. We
denote the vector space of all symmetric polynomials in Q[x1, 2, ..., z,] by A,.

Let =% = z1%ze*? -2, for @ = (aq,a9,...,0,) € N°. For A\ =
(M, A2, ..., ) € P, let my = my(z1,29,...,2,) = Zxo‘ where a runs over

«
all distinct finite series (aq, aq,...,a,) € N obtained by permuting the parts
of the series of n non-negative integers (A1, A2, ..., \;,0,...,0). my is called the
monomial symmetric polynomial corresponding to A. {my | A € &, } is a basis
of A,,.
There are other well-known bases of A,,. First, the elementary symmetric
polynomial ey = ex(x1,xa,...,x,) is defined by

ex =ex(r1, T, ..., Tpy) = M (1) (120) -m<1xlw)



for A € 2. {ex | A € &} is a basis of A, [5, Theorem 5.3.5.]. Next, the
complete symmetric polynomial hy = hy(x1,2a,...,2z,) is defined by

hy =hx(x1,22,...,2y)

= E my E my2 s E m#l(x)

ull’—M #22">\2 Xy
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for A€ Z. {hy| X € &,} is a basis of A, [5, Theorem 5.3.8.]. Finally, the
power sum symmetric polynomial py = px(x1, T2, ..., Ty,) is defined by

Py = p)\(.’L‘l,JT27 e ,$n) =M )M (M) " m()\l(x))

for A€ Z. {pr| X € £} is a basis of A,, [5, Theorem 5.3.9.]. These bases of
A,, have the following relations:

Proposition 1.3 ([4, Chapter I, (2.14°)]). The following relations hold:

X
1. e(n) = —PX-
Arn A
1
2. h(n) = Z Zp)\.
AbEn

We also recall some concepts about the symmetric polynomials which have

a parameter ¢ to prove the theorems. Let A;, = A, ® Q(¢), which is the set

of all elements in the polynomial ring Q(¢)[x1, z2,...,z,] which are invariant

under the permuting of the variables x1,z9,...,z,. We define a inner product
<'7 '>t on At,n by

ey

1
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for \,u € &,, where §,, is the Kronecker delta. For A € &, the Hall-
Littlewood symmetric polynomial Py(t) = Px(z1,%2,...,Tn;t) € Ay, is defined
by

P,\(t) :P)\(l‘l,.’lﬁg, N l‘n;t)
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where mg(A) = n—I(\). Especially if A = (17), P1n(t) = () holds [4, Chapter
ITI, (2.8)]. The inner product of the Hall-Littlewood symmetric polynomials
satisfies the following property:

Proposition 1.4 ([4, Chapter III, (4.9)]). For A, u € 2y, (PA(t), Qu(t)): = dxp

[e’) mz(u

holds, where @Q,,(t) H H (1 =) | Pu(t) for p.

=1 j=1



The complete symmetric polynomials can be expressed by the Hall-Littlewood
symmetric polynomials as follows:

Proposition 1.5 ([4, Chapter III, 4, Example 1]). With n(\) = Z(z -1\
i>1

for A € &,
hiny = D"V PA()

An
holds.

Now we can prove Theorem 1.1 and 1.2. By calculating the inner product
<€(n), e(n)>t, we obtain

(€(n), €(n))t —<ZPA,Z 6“pﬂ> = Z ZZ (Pxs Pt
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and

(e(n)s €yt =(Pany(t), Pany(t))e = <P<1n)(t)7 (H 1 —1t1> Q(1n)(t)>

=1
= (E 1 _ tl) <P(1")(t)7Q(1”)(t)>t = ZZI_II 1— tiv

which completes the proof of Theorem 1.1. Similarly, we obtain Theorem 1.2
by calculating (e(,), hn))¢ as follows:

(e(n), hin))t = <Z *pA,Z > Z ;2 (Pxs Pu)t
t

AFn pl—n A,pukn A<p
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1.2 Bijective proof of Theorem 1.1 and 1.2

In this section we give another proof of Theorem 1.1 and 1.2 by constructing
certain bijections. We fix a non-negative integer n € N.
First, we prove Theorem 1.1. Let

An,d: {(al,az,...,an) a; EN,Zai'iZd}
=1

for d € N,
L)
Bya= (bl,bg...,bl()\)) biEN,Zbi-)\iZd

i=1

for A+ n, d € N, and C) be the conjugacy class of &,, corresponding to A - n.
One obtains

n

1 n ) ) o o0
n =g = IO+ + 82+ ) =nl D A alt? =) [ Ana x St
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and
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Therefore it suffices to construct a bijection

fn,d : An,d X 6n — |_| (BA,d X C)\)
AFn

for d € N.
To construct f, 4, we define

fra((ar,a2,. .. an),0) € |_|(B)\,d x Cy)

AFn
for (a1, az,...,an) € Ap,q and o € &,, by the following algorithm:
e Step 1. Draw the rim of the Young diagram of the partition
(191292 ... ) - d,
and split it into blocks of columns by depth.

e Step 2. Write the numbers o(1),0(2),...,0(n) on each column from the
left to the right. If the width of the diagram is less then n, add columns
of depth 0 to the right of the diagram to make it has n columns before
writing the numbers.



e Step 3. For each blocks of the diagram, split it at just to the left of
the smallest number if the smallest number of the block is not at the
most left place. Repeat the operation on new blocks until every block has
its smallest number at the most left place. For example, the following
diagrams need this operation once or twice, respectively.

- =L ]

21 4 3 21 4 3

. -0 ] = LLI]
321 321 321

e Step 4. Rearrange the blocks by the following rules:

1. Put wider one to the left.

2. If there are blocks of the same width, put one which has the smallest
number to the left.

e Step 5. Let [ be the number of blocks in the diagram. Let A; be the
width of the ith block from the left, and b; be the depth of it for 1 < i <.
It determines the partition A = (A1, Aa,..., ) Fn. For 1 <i </ let 7y
be the cyclic permutation (j; 1, ji2, ..., Jixn) € Sy if ith block from the
left has the numbers j; 1,7ji2,...,Jix, from the left.

e Step 6. Define
fod((ar,az,. .. a,),0) = ((b1,ba, ..., byx)) 7172+ - - Tin)) € Baa x Ch.

We illustrate this algorithm with an example
1 2 3 4
(0, 0,1, 1) € A477 and <3 1 4 2) € Gy

We get the following left diagram after Step 3, and the right one after Step 4.

I

2 2

Therefore we get

fur ((0,071,1% (; - ﬁ)) =((2.1,2), (1,9)(2)(3))

€Bu1,1),7 X Ci21,1)-
We can define
Fad (b1, b2, byn), T) € Apa X S,

for A n, (b1,ba,...,byn)) € Bxag and 7 € C) to construct the inverse function
foa b |_| (Ba,a x Cr) = Ana x 6,
AFn

by the following algorithm:



e Step 1. Suppose
T :(7"1’1, 7"172, e ,7“17)\1)(7'271, T2727 e ,7"27)\2)
(0. T 25 - TH) Auy )
is the decomposition of 7 into disjoint cycles with conditions
’I“i71 = mil’l{’l“i,l, 7“1'72, e 7Ti,A1}

for each i, and r; 1 < i1 if Ay = Ay

e Step 2. For 1 < i <I()\), let X; be the block of width A;, depth b;. Write
the numbers r; 1,7;2,...,7; 5, on each column of X; from the left to the
right.

e Step 3. Arrange the blocks X1, Xa,..., Xj(y) by the following rules:

1. Put deeper one to the left.

2. If there are blocks of the same depth, put one which has the smallest
number to the right.

e Step 4. Define fn,d_l((bl,bg,...,bl(A)),T) = ((al,ag, . an),a) where
the blocks form the Young diagram of shape (19129 ...n% ) and each
column of the diagram has the numbers o(1),0(2),..., ( ) from the left.

By the above two algorithms, we can see that f, 4 is a bijection between

A% 6, and |_| (Ba,a % Cy). It completes the proof of Theorem 1.1.

AFn
Next, we prove Theorem 1.2. We call A € & even if €y = 1, and we call it

odd if ey = —1. One obtains

ti—1 ('n,) n 1 (n) e d
! - =t\2) . p! - = t\2) . Ana X Gt
nzl;[ll*tz i:117162 dz—;)l " "

and
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Therefore it suffices to construct a bijection

In.d * |_| (B)\,d X C>\) L (An,df(g) X Gn> — |_| (B)\,d X C,\)
AFn AFn
Arodd A:even

for d € N. We construct g, 4 by constructing two bijections

In,d.1: |_| (Bra x Cy) — |_| (Bx,a x Cx) | \ ADy, 4,

AFn AFn
A:odd A:even

2

9n,d,2 : An,df(") X Gn — ADn,da

where AD,, 4 is the set of all elements

((b1,ba, ..., bn), (1)(2) -~ (n))
in B(iny,q X C(1n) such that by, bs, ..., b, are all distinct.

We construct gn_ 4,1 by the involution I on <|_| (Bx,q % C,\)> \ AD,, 4 de-
AFn
fined by the following algorithm:
e Step 1. Take - n and ((b1,b2,..., b)), 7) € (Bua x Cy) \ ADy 4.

e Step 2. Take
((a17a27 ERRE) an),a) = fn,d_l((blv b27 ERRE) bl(,u))vT) € An,d X Gna
where f, 4 is the one constructed to prove Theorem 1.1.

e Step 3. Let J ={j €{1,2,...,n—1} | a; =0}. J is not empty because
((b17 ba,. .. ,bl(u))ﬂ') is not in AD,, 4. Hence we can take jo = min J.

e Step 4. Define

I((b17b27 s 7bl(u))77-) :fn,d((a17a27 s 7an)70 ' (jOajO + 1))

S |_|(B,\,d X C)\)
AbFn

We illustrate this algorithm with an example
(2,2,1) € Big1,y,r and  (1,4)(2)(3) € C2.11)-
By using the algorithm for fn,tf1 in Theorem 1.1, we obtain the following

diagram.
o
3 3




Thus we get

fr(@20,0.00)6) = (00105 § 5 5)) e

in Step 1. In the case, J = {1,2} and jo = 1. Therefore in Step 4, we get

1((2,2,1),(1,4)(2)(3)) =far ((0,0,17 1), (2 g) : (1’2)>

—far ((0,0,171), G g)) .

By the algorithm for f, 4 in Theorem 1.1, we obtain the following diagram from

1 2 3 4
(0,0,171)6144’7 and <1 9 4 3>€64.

I

3 3

1

NN =N
=W e W

Therefore

1((2,2,1), (1,4)(2)(3)) =fa7 ((0,0,1,1), G - §>>

=((2,1),(1,2,4)(3))
€B3,1),7 X C(3,1)

C || BazxCy).
Neven
The operation of (jo, jo+1) on o in the Step 4 exchanges the numbers written
on the most left two column of the same depth. Hence it exchanges even number
of blocks of the depth to odd number of them and vise versa. Moreover, the
algorithm does not give an element of AD,, 4 because it does not change the
depth of each column of the diagram. Therefore one can see that

I((b1,b2, - i), 7) € | || (Brax Ch) | \ADpg

AFn
A:even

for ((b1,ba,... b)), ™) € | | (Baax Ca), and

AFn
A:odd

I((br, b2, - i), 7) € || (Baax Ch)

AFn
Arodd

for ((bl,bg, .. .,bl(u)),T) € |_| (Ba,a x Cy) | \ AD,, 4. Since I is involution,

AFn
Aeven

10



we obtain a bijection

In,d1: |_| (Bra x Cy) — |_| (Bxr,a % Cyx) | \ AD,, 4.

AFn AFn
A:odd Ateven

Next, we define
gn7d72((a1, Ay ...y 0p), 0) € AD,, 4

for (a1, as,...,a,) € Amd_(;) and o € &, by

gn,d,2((a1; agz, ..., an)u U) = fn,d((al + 1,(12 + 17 RN ¢ . | + 17 a/’n)7 0)7
where f, 4 is the one constructed to prove Theorem 1.1.

For example, for (1,0,0,0) € A4 ; and <515 ? i ;l), we have

1 2 3 4 1 2 3 4
94,72 <(1,0,0,0), (3 1 4 2)) = f4,7 ((2717 130)5 (3 1 4 2)) .

Using the algorithm for fy 7, we obtain the following diagrams for (2,1,1,0) €

1 2 3 4
A4’7 and 3 1 4 2 64

Therefore, we have

a7 ((1,0,0,0),(; ? i 3)) =faz ((2,1,1,0),(; ? i ;))

=((2,0,4,1),(1)(2)(3)(4))
€Bu,1,1),7 X Ciii,1,1)-

Since the diagram made from ((a1 +las+1,...,ap-1+ 1,a,), 0) by the
algorithm for f,, 4 has columns of all distinct depths, gmd,g((al, ag, ..., 0n), 0’)
is an element of AD,, 4.

We can construct the inverse function

—1.
gn,d,2 . AD’n,d — A’I’L,d—(") X Gn

2

by defining
gn,d,271((b1a bay ..., bn), (1)(2) ce (Tl)) S Amd—(") x G,

2

for ((b1,b2,...,b,),(1)(2) -+ (n)) € AD, 4 by the following algorithm:

11



e Step 1. Take
((a1,a2,...,an),0) = fnvd_l((bl,bg, o bn), (1)(2) - (n) € Apa X G,
where f,, q is the one constructed to prove Theorem 1.1.

e Step 2. Define

gnd,2((b1,b2,.. . by), (1)(2) - (n))

:((a1 - l,ag - 1, ey Qp—1 — 1,(In),0')
EAn,d—(g’) x G,.

Since ((bl, bay .. oybn), (1)(2) - (n)) € AD, 4, @1,09,...,6,—1 # 0 and
(al —lias—1,...,ap-1 — 1,an) S An,df(")'

2

Therefore we have defined a bijection

gn,dz2 : An,d—(g) X 6n — ADn’d.

By two bijections gy.4,1 and gy.q42 we have constructed, now we have a
bijection

Gn,d |_| (BaaxCy) | U (An,d,(n) X Gn) — |_| (Bx,a x Cy)

2
AFn AkEn
Arodd A:even

and it completes the proof of Theorem 1.2.

1.3 Generalizations of Theorem 1.1 and 1.2

In Section 1.1, we gave a proof of Theorem 1.1 by calculating the inner product

<€(n), e(n)>t = <P(1n)(t), P(ln)(t)>t.

We can easily generalize it to the inner product (Py(t), Px(t)); of an arbitrary
Hall-Littlewood polynomial as follows using Theorem 1.1 and Proposition 1.4.

Theorem 1.6. For A € £, the following formula holds as an identity of formal
power series of t:

oo m;(X) [eS)
o= 1T 7= =11 X =

=1 ukmy;(\) “H i=1

L) 1

1— thi’

We give another generalization of Theorem 1.1 and Theorem 1.2. The Schur
polynomial sy is a symmetric polynomial defined by
det (a;%‘j g

v )1§i,j§n

sx = salz1, T2, ) = —
det (Jc J

! )1§z‘7j§n

for A € Z,. {sx | A € P,} is a basis of A,, [5, Theorem 5.4.4.]. The Kostka
polynomial K, (t) € Q(t) corresponding to A, € & is defined as the entry

12



of the transition matrix from the basis of Schur polynomials and the basis of
Hall-Littlewood polynomials:

sx= Y Ku(t)Put) (A€ 2).
peyp

Schur polynomials and power sum polynomials enjoy the following relation:

xX*

Proposition 1.7 ([4, Chapter I, p114]). For A - n, s) where

pukn
X is the irreducible character of &,, corresponding to .

By calculating the inner product (sy,s,)¢, we show the following theorem:

Theorem 1.8. For n € N and A\, u € &2, the following formula holds as an
identity of formal power series of ¢:

oo m;(v) ) Uv)

1
<5>\a3u>t:ZK/\V Ky ( H H 1_tz_zx Hl—t”i.

vkn Jj=1 =1 vkn =1

Since s(1n) = e(n) and s(,) = h(yy [4, Chapter I, (3.9)], Theorem 1.8 is a
generalization of Theorem 1.1 and 1.2. Now we prove Theorem 1.8. For n € N
and A F n, we define Sy(t) = Sx(x1,®2,...,2n;t) € Ay by

SA(t) = Sxa(z1,@2,. .., xn5t) = det (QAi—i+j(t))1Si,jSl(>\),
where ¢.(t) = Qqy(t) = (1 — )Py (t) for r > 1, qo(t) = 1, and ¢,(t) = 0 if
r < 0. Sx(t) and Schur polynomlals have the followmg properties:
Proposition 1.9 ([4, Chapter 111, p241]). For A, u + n,

0o mj(v)
sx=) (2K OKw® [T IT =5 | Su®:
pEn \vkn j=1 i=1

Proposition 1.10 ({4, Chapter III, (4.10)]). For A, u F n, (Sx(t),su)t =
holds.

Using these propositions, we can calculate

u A e
<S)\a3u>t —< X Pps § X > = § X (Z)Z( ( )<pp7pa>t
pkEn t po

obn p,okn
l(v)
@) 1
B Z H 1 —tvi
vkn i=1

and

oo my;(v)
(SxsSu)t —<Z ZK)‘” H 1—1ti Sp(t),su>

pFEn \vkn =1 i=1 p
oo m;(v) 1
- o T 1
vkn Jj=1 i=1

which completes the proof of Theorem 1.8.
We do not know a bijective proof of Theorem 1.8. It would be an interesting
problem to prove Theorem 1.8 bijectively like Theorem 1.1 and 1.2.

13



2 The case of two parameters

In this section we prove the following identities of two parameters ¢,t as gener-
alizations of Theorem 1.1 and 1.2.

Theorem 2.1. For n € N, the following formula holds as an identity of formal
power series of g, t:

l(/\)

-yt it

i=1 )\Fn =

Theorem 2.2. For n € N| the following formula holds as an identity of formal
power series of g, t:

n (N

tz 1 _ €x
H 1—# z;lz,\Hl—tA

i=1

It is also shown that the both sides of the equations of Theorem 2.1 and 2.2
are equal to the ¢, t-inner product (e, €(n))q,c and (€(n), Mn))q,t, respectively.

2.1 A proof of Theorem 2.1 and 2.2 using symmetric poly-

nomials

In this section we prove Theorem 2.1 and 2.2 using symmetric polynomials. Let
Agtn = Ay, ®Q(g,t), which is the vector space of all elements in the polynomial
ring Q(g,t)[x1,xa, ..., x,] which are invariant under the permutations of the
variables 1,2, ..., z,. We define a inner product (:,)4+ of Ag¢rn by

1— gt
<pA7pM q,t 6/\u2)\ H 1— ™

for \, pp € Z,,. We also define the partial order on & (n) called dominance order
by

PN = Vie{l,2,....on},prtpp+- s S A F A4+ N

for A\, p € P(n), where \; = 0 for [(\) < j, p; =0 for I(1) < j. The following
proposition holds for the inner product and the partial order:

Proposition 2.3 ([4, Chapter VI, (4.7)]). There is a unique family

{P)\ (q7 t)})\Fn
which consists of elements of A, , satisfying the following conditions:

1. There is a map

w: A p) [Ape Pm),n<At = Qlgt)
\% w

(A ) = Ux

satisfying the following:

14



(a) For A € £(n), Px(q,t) Z Unp My -

pEn
u<A

(b) For A € Z(n), uan = 1.
2. For A\, u € Z(n) such that X\ # u, (Px(q,t), Pu(q,t))q: = 0.

The symmetric polynomials Py(q,t) defined by the proposition are called
the Macdonald polynomials. In particular, Pn)(q,t) = e, [4, Chapter VI,
(4.8)]. Let ba(q,t) = (Pa(q,t), P(q,1)),¢ and Qx(q,t) = bx(q,t)Pr(g 1),
(Pr(q,t),Q.(g,t))q,t = 6xu. The following explicit formula of by(g,t) is known:
Proposition 2.4 ([4, Chapter VI, (6.19)]). For A € 2,

1— qa(s) tl(s)-&-l

bA(q’ t) = H 1— qa(s)+1tl(s)
SEA

holds, where the right hand side is the product for all cells s in the Young
diagram of A, and for a cell s, a(s) is the number of cells right of s in the same
row as s in the diagram, and I(s) is the number of cells below s in the same
column as s in the diagram.

By calculating the inner product (e(,), €(n))q,:; We obtain

(Y €ENE
R DU D D SE T
q;t

AFn ;Ll—n A, pbEn H

(N N
1—q"
_ZZ)\H 1 — ¢t

AFn

and

(e(ny €n))at =(Pany(@,t), Pany(@,))qe = baany(q,t) ™

_ 1— qa(s)Jrltl(s) B n 1— qtnfi _ n 1— qtifl
- H 1— qa(s)tl(s)+1 - H 1 — ¢gn—itl H 1—¢
se(1m) i=1 i=1

which completes the proof of Theorem 2.1.
Next, we prove Theorem 2.2. Let A, ; = @A%t’n and €44 : Agr = Q(g,t)

n>0
be the homomorphism defined by
1—4q"
Eq:t(p(T)) = 1—¢r

The followings are known about Py(q,t), Qx(g,t) and €44

Proposition 2.5 ([4, Chapter VI, (2.6) and (4.13)]). For n € N,
1) .
1 11—t
> Pa(w;q,)Qx(y;q,t) = Y = 11 T | Pu(@)pu(y)

Hi
Abn pkn TH\i=1 q

holds, where Py (z;q,t), p.(z) are symmetric polynomials of variables 1, z2, ..., 2y,
and Qx(y;q,t),pu(y) are symmetric polynomials of variables y1,92,. .., Yn.
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Proposition 2.6 ([4, Chapter VI, (6.17)]). For A € 2,

s _ qa’(s)+1
et (Pala.t) = I] 1= g )+

SEA

holds, where a'(s) is the number of cells left of s in the same row as s in the

diagram, and I’(s) is the number of cells above s in the same column as s in the
diagram for a cell s.

Since one obtains

D Pa(;q,t)eq (Qa(y;a,0) =Y balg,0) Pal; g, t)eqi (Pa(yi ¢, 1))

AFn AFn

t (s) _ q° (s)+1

—ZbA q,t (H —a()tl(8)+1> Px(z;q,1)

AFn

S (M ra
An \sex 1 — qo(s)+1¢l(s) o
and
1(w)

PplZ ( )Eq, (pu (y))

pukEn

- 1 L) 1 — g U(p) 1— gt
pukn H i=1 =1

= Z 7]7;1 h(n)( )
pkEn

by applying e, with respect to variables y1,y2,...,Yn,
tl'(s) _ qal(s)-&-l
hiny =) (H T g ) D@
AFn \seX

holds by Proposition 2.5. Now we complete the proof of Theorem 2.2 by calcu-
lating (e(n), h(n))q,t as follows:

(et hn))ast <Z mez > = Y P papa

en un © PP WS Ap

I(N)

1—
IS =

AFn i=1
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tl'(s) _ qa'(s)+1
(emy>hm)ar = Pam(@: 1), > [ T [Eprerswe) Pu(q,t)

pkEn \s€p q.t
H tl'(s)iqa'(s)Jrl 1
iy L= T | b @D

_ H tl’(s) _qa'(s)Jrl
1— qa(s)tl(s)-i-l

se(1n)

B n t’i—l —q
Loy
=1

2.2 A bijective proof of Theorem 2.1 and 2.2

In this section we prove Theorem 2.1 and 2.2 by constructing certain bijections.
We fix a non-negative integer n € N.
First, we prove Theorem 2.1. Let

Dnae=4JC{0,1,...,n—1} | j=d || =e
jed
for e, k € N. One obtains

n

[I0 -0t = 303 1D

7

i=1 d=0 e=0
and therefore
1— gttt i 0 n .
n'H o H1+tl R | ()
i=1 i=1
oo n
=G| Z At 37N Doy et (—g)°
d1=0 do=0 e=0
oo n
“SOS T L] (A, X D x 62)| g
d=0e=0 di1+do=d

Next, let

E;\r,e: JC{L2,...,I(N)} Z)\jze,U\iseven ,
jeJ

E):e: J§{1,2,7l(/\)} Z)\j:€,|¢]‘ is odd s
jeJ

17



and then we obtain

IESIFE,
D V)
g 1t
ol LA 1N
2\ 4
AFn i=1 i=1
-S o (S e (|5 o
AFn d=0 e=0
oo n
S (1l 103 - a5, 1) e
d=0e=0 \Fn
:ZZ < |_|(B/\’d x By, x Cy)| = |_|(B,\,d x By, x Cy) > t4q°.
d=0e=0 AFn AFn

Therefore it suffices to construct a bijection

fn,d,e : <|_| (B)\,d X E;e X O)\)) u ( |_| (An,dl X Dn,dg,e X 6n)>

AFn dy+do=d
+
— |_|(B)\7d X E)\,e X C)\)
AFn

for d € N and even number e satisfying 0 < e < n, and

fn,d,e : <|_| (B)\,d X E;e X CA)) u ( |_| (An,ch X Dn,dg,e X 6n)>

AFn dy+do=d
— |_|(B)\7d X E):e X C)\)
AFn

for d € N and odd number e satisfying 0 < e < n. Here we construct a bijection
fn,d,e for d € N and even number e satisfying 0 < e < n. We construct f, 4. by
constructing two bijections

fr,den |_| (Bra x Ey , x Cy) — <|_| (Bra x B, x CA)) \ADy d,e;
AEn AFn

fn,d,e,2 : |_| (An,dl X Dn,dg,e X Gn) — ADn,d,e;
dy+dy=d
where AD,, 4. is the set of all elements

((b17b27 . '7bl()\))a J7 T)

in |_| (Ba,a X E)te x Cy) such that A\; =1 for all j € J, and b; for j € J are all

AFn
distinct.

We construct fy, 4.1 by the involution I on

<|_| (B>\7d X E)T,e X C,\)) U <|_| (B)\,d X E)te X C)\)> \ADn,d,e

AFn AFn

defined by the following algorithm:

18



Step 1. Take p - n and
((bl,bg, .. '7bl(u))’ J, 7') c (Bu,d X E/;,e X O“) L (Bp,,d X E:,e X Cﬂ)
satisfying ((bl, ba, ... bywy), J, T) ¢ AD,, g

Step 2. Use Step 1 and 2 of the algorithm for fn)([l in Theorem 1.1, and
obtain a diagram of blocks. The ith block from the left is of width p; and
depth b;, and each column has number defined by 7.

Step 3. For j € J, paint the jth block from the left. There are e painted
columns because J € Ef , UE, .

Step 4. Rearrange the blocks by the following rules:

1. Put deeper one to the left.
2. If there are blocks of the same depth, put painted one to the left.

3. If there are blocks of the same depth and painting, put one which
has the smallest number to the left.

Step 5. Since ((bl,bg, b))y T) ¢ AD,, 4., there is a painted block
with width at least 2, or there are painted blocks of width 1 and same
depth. Therefore there is a depth § such that there are at least two
painted columns of depth §. Let dy be the deepest such depth §.

Step 6. Write the painted blocks of depth g X1, Xo,... from left. For
each j, write the numbers written on each column of X; ¢;1,¢;2, ... from
left. Let

p=1(q1,1,q12,--)(q2,1,92,2,...) - € Gy,

and i1, 42 be the smallest two numbers in

{on, a2, JU{g21,q22,.. . JU---
which satisfies i1 < io.

Step 7. (i1,i2)p is written (r11,71,2,...)(r2,1,72,2,...) -+ by some dis-
joint cycles (r;1,7j2,...) satisfying r; 1 = min{r;1,7;2,...} for each j,
and ry 1 <721 <---. For each j, let Y; be the painted block whose width
is the length of (r;1,7j,2,...) and whose depth is dy, and whose each col-
umn has the numbers 7;1,7;9,... from the left. Arrange Y3,Y5,... from
the left, and exchange the all painted blocks of depth dy of the diagram
made in Step 4 for them.

The operation of (i1, 42) on p changes the sign of p. Hence (i1, i2)p consists
of even numbers of cycles if p consists of odd numbers of them, and vice
versa. Therefore this step exchanges the parity of the number of painted
blocks in the diagram.

Step 8. Use Step 4 to Step 6 of the algorithm for f,, 4 in Theorem 1.1,
and take the corresponding partition A - n and the elements of B) 4 and
Ch.
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e Step 9. Put J' be the subset of {1,2,...,l()\)} such that j € J' if and
only if the jth block from the left of the diagram is painted. One can see

J eE{ ifJeE,  and J € Ey ifJeE},.

e Step 10. The elements of B, g4, Ej\re U E; . and C)y are determined by
Step 8 and 9. Therefore one can define

I((btha .- ~7bl(u))a J, 7_)

€ <|_|(B)\7d X E):e X C)J) (| <|_|(B>\7d X E:\i_,e X CA)> .

AFn AFn

Since this algorithm does not change the depth of the painted columns,

one can see I((bl7 ba, ..., b)), J, T) ¢ AD,, g
We illustrate this algorithm with an example (2,1,2,2,2) € B(21,1,1,1),11,
{173a5} € E(_271,17171),47 (275)(1)(3)(4)(6) € C1(2,1,1,1,1) where n = 6, d = 11,
e = 4. One obtains the following left diagram after Step 3, and the right one

after Step 4.
- - H
1 1

2 5 3 46 2 5 3 6 4

In this case, do = 2 and p = (2,5)(3)(6), i1 = 2, 4o = 3. Since (i1,i2)p =
(2,3)(2,5)(3)(6) = (2,5,3)(6), one obtains the following left diagram after Step
7 and the right one after Step 8.

- e 3

25 3 6 4 2 5 3 4 6

Therefore we have

1((2,1,2,2,2),{1,3,5},(2,5)(1)(3)(4)(6))
=((2,1,2,2),{1,4},(2,5,3)(1)(4)(6))

+
€Biana X B4 X O

Since this algorithm changes the parity of the number of painted blocks in
the Step 7,

I((bl,bg, .. .7bl(#)), J, ’7') S <|_| (B)\’d X E;;e X C)\)> \ADn,d,e
AFn

for ((bi,ba,... by, J,7) € |_| (Bxa x E5, x Cy), and
AFn

I((b1, b2, - by)s Jo7) € || (Bra x Ex o x Ch)
AFn
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for ((bl, bay.., bl(u))a J, ’1') € <|_| (B)\,d X E)te X C)\)> \ADn,d,e~ Since [ is in-
AFn
volution, we obtain a bijection

frdea | | (Bra x By, x Cy) — <|_| (Bra x EY, x CA)) \ADpg.e.

AbFn AFn

Next, we define

fn7d7e,2((a1a ag, ..., Cbn), Ja U) S ADn,d,e

for dy,dy satisfying dq + d2 = d and (a1,a2,...,a,) € Anay, J € Dy gy, and
o € G,, by the following algorithm:

e Step 1. Write J = {j1,j2,.--,Je With0 < j1 < jo < -+- < je <n—1,
and draw the rim of the Young diagram of the partition of d obtained by
adding parts ji,j2,...,Je to (191292...n% ) If j; = 0, we consider the
diagram has a row of width 0 at the bottom.

e Step 2. Split the diagram into blocks of columns by depth.

e Step 3. For 1 < m < e, the diagram has a row of width j,, by Step 1.
Write the highest such row the i,,th row.

e Step 4. For 1 < m < e, the diagram has a column of depth ¢,,, — 1 by
Step 3. Split the most right such column and paint it. This step makes e
painted columns whose depths are all distinct.

e Step 5. Use Step 2 to Step 6 of the algorithm for f, 4 in Theorem 1.1 for
the diagram, and take the corresponding A - n and elements of B) 4 and
Ci.

e Step 6. Put J' be the subset of {1,2,...,I(\)} such that j € J if and
only if the jth block from the left of the diagram is painted. One can see
J e E;\r(, since e is even.

e Step 7. The elements of B, 4, Ej\'e and C) are determined by Step 5 and
6. Therefore one can define

fn,d,e((a17a27 s 7an)7J70) € |_| (B)\d X E;e x C)‘)
AFn

Moreover, this is an element of AD,, 4. because the depths of the painted
columns in the diagram are all distinct.

We illustrate this algorithm with an example (0,0,1,1) € Ay7, {0,3} €
D, 32 and (é % i ;) € G4, where n = 4, d = 10, and e = 2. In this case
j1 = 0 and js = 3, thus we draw in Step 1 the rim of the Young diagram of
(4,3,3,0) + 10, which is obtained by adding parts 0,3 to (1°2°3'4') = (4,3).
Since i1 = 4 and i = 2, we get the following left diagram after Step 4. We use
Step 2 to Step 6 of the algorithm for Theorem 1.1 in Step 5, and we get the
following middle diagram after the Step 3 and the right one after the Step 4.
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Thus we obtain

Faros ((0,0,1,1),{0,3}, G f i ;‘))
=((3,1,3,3),{2,4}, (1)(2)(3)(4))

€B1,1,1,1),00 X Bl 1 11y0 X Cain-

We can construct the inverse function

-1
fn,d,e,Z : ADn,d,e — I_I (An,dl X Dn,dg,e X 6n)
di+do=d

by defining

fn,d,e,Qil ((bh b27 sy bl(u))v le T) S |_| (An,dl X Dn,dz,e X Gn)
dy+do=d

for ((bl, ba, ... b)), J', T) € AD,, 4. by the following algorithm:

e Step 1. Use Step 1 and 2 of the algorithm for fn)cfl in Theorem 1.1, and
obtain a diagram of blocks. The ith block from the left is of width p; and
depth b;, and each column has number defined by 7.

Step 2. For j € J', paint the jth block from the left. There are e painted
columns of all distinct depths.

Step 3. Arrange the blocks by the following rules:

1. Put deeper one to the left.
2. If there are blocks of the same depth, put painted one to the right.

3. If there are blocks of the same depth and painting, put one which
has the smallest number to the right.

Step 4. Let the depths of the painted columns are i1, s, ..., with the
condition i1 > 19 > -+ > i,.

Step 5. For 1 < m < e, write the (i,, + 1)th row has width j,, > 0.
Step 6. Define

fade2 ((b1,ba, o byw), I 7) = ((a1, a2, ... an), J,0)
by the following condition:

1. J= {jlan»"'uje}'

2. (191292 ...7n% ) is the partition obtained by removing the parts j1, jo, . . .

from the shape of the diagram.
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3. Each column of the diagram has the numbers

from the left.

Therefore we have defined a bijection

fn,d,e,Q : |_| (An,dl X Dn,dQ,e X Gn) — ADn,d,e~
dy+do=d

By two bijections fy.q.,1 and fn 4.2 We have constructed, now we have a
bijection

frde: ('_I (B)\7d X E;,e X C)\)> L ( |_| (An7d1 X Dy dye X Gn)>

AbEn di+da=d

— |_| (Bra x EY, x Cy)
AFn

for d € N and even number e satisfying 0 < e < n. In a similar way, one can
construct a bijection

fn,d,e : <|_| (B)\,d X E)te X CA)) U < |_| (An,dl X Dn,dg,e X Gn))

AFn dy+do=d

= | |(Bra x Ex. x Ch)
AFn

for d € N and odd number e satisfying 0 < e < n. By these bijections, we
complete the proof of Theorem 2.1.
Next, we prove Theorem 2.2. One obtains

nooi1 n 1 n -
it ) o)

=1 =1
_en|(z| e )(z S Dot >e)
d;=0 do=0e=0
=y ((_1)6 > |And1 X Dp.dym—e X G, |> tlq°
d=0 e=0 dy+do=
and
1) N
€X 1—q *
w2
DV
Nen 2N st 1—t
o (1 i)
. A
Yo 2 (M ) (-
en v\ -t i=1
n
=St (S (32 (2] - [ o
AFn e=0



:Z (Z (e,\‘B,\,deie XC)\’*G)\’B)\VdXE;e xc/\’)>tdqe

d=0e=0 \AFn
0o n
= E E ‘B/\,dXE)teXC)\‘_ E ‘B)\,dXE):EXC)\‘
d=0e=0 Abn AFn
A:even A:even

— E ‘B,\’dXE;\r,eXC)\‘—‘r E ‘B)\deE;’eXC)\‘ tdqe.
AFn AFn
A:odd A:odd

Therefore it suffices to construct a bijection

In.d.e - |_| (BA,d X E)T,e X C)\) U |_| (B)\yd X E;e X C)\)

AFn AFn
Areven A:odd
U ( |_| (A’ﬂ,ch X Dn,dz,nfe X 671))
di+de2=d
+ —_
— I_l (B)\deE/\eXC)\) U |_| (B)\7dXE)\7eXC)\)
AFn AFn
A:even A:odd

for d € N and even number e satisfying 0 < e < n, and

9n,de * |_| (B)\,d X E)te X CA) U |_| (B)\yd X E):e X C)\)

AFn AFn
A:even A:odd
U ( |_| (An,dl X Dn,dQ,nfe X 677,))
d1+do=d
— +
— I_l (B)\7d><E/\7eXC)\) U |_| (B)\7d><E)\7E><C)\)
AFn AFn
A:even A:odd

for d € N and odd number e satisfying 0 < e < n. Here we construct a bijection
9n,de for d € N and even number e satisfying 0 < e < n. We construct g, 4, by
constructing three bijections

9n.de,l : |_| (B)\yd X E;,e X C)\) — |_| (B)\’d X E):e X C)\) \AD;,d,ev

Abn Abn
Ateven A:odd

9n,d,e,2 - |_| (B,\7d X E)te X C)\) — |_| (B,\7d X E)te X C)\) \AD{n,d,e’

An AFn
Arodd A:even
’
9n.d,e,3 - |_| (An,d1 X Dn,dg,n—e X Gn) — ADn7d7e7
dy+do=d
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where AD], ;. is the set of all elements

e

((b17b27 e 7bl()\))u J7 T)

S I—l (B)\deE;eXC)\) (] |_| (B)\’dXE):eXC)\)

Abn AFn
Ateven A:odd

such that \; =1 forall j € {1,2,...,I(AN)}\J, and b; for j € {1,2,...,I(N)}\J
are all distinct.
We construct gy, 4,1 and gn 4,2 by the involution I on

<|_|(B,\’d X E)T,e X CA)> U <|_|(B)\’d X E)te X C)\)> \AD’/IL,d76

AFn AFn
defined by the following algorithm:
e Step 1. Take u - n and

((b1,ba, ..o byy)s J,7) € (Bua X B x Cu) U (Bua x Ef . x C)

satisfying ((bl7 ba, ..., b)), J, T) ¢ AD]

n,d,e*

e Step 2. Use Step 1 and 2 of the algorithm for fn,d_l in Theorem 1.1, and
obtain a diagram of blocks. The 4th block from the left is of width p; and
depth b;, and each column has number defined by 7.

e Step 3. For j € J, paint the jth block from the left. There are e painted
columns because J € Ef UE, .

e Step 4. Rearrange the blocks by the following rules:

1. Put deeper one to the left.
2. If there are blocks of the same depth, put painted one to the left.
3. If there are blocks of the same depth and painting, put one which

has the smallest number to the left.

e Step 5. Since ((bl,bg, o biwy)s I, 7') ¢ AD] there is an unpainted

n,d,e’

block with width at least 2, or there are unpainted blocks of width 1 and
same depth. Therefore there is a depth ¢ such that there are at least two
unpainted columns of depth §. Let dy be the deepest such depth §.

e Step 6. Write the unpainted blocks of depth dg X1, Xo, ... from left. For
each j, write the numbers written on each column of X; ¢; 1,¢j2,... from
left. Let

p= (ql,laQ1,27' . ')(q?,laq?,Qa .. ) € Gna

and 41,42 be the smallest two numbers in

{aq2, -} U{g1,q22,.. U

which satisfies i1 < io.
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e Step 7. (i1,%2)p is written (r1,1,71,2,...)(r2,1,72,2,...) -+ by some dis-
joint cycles (r;1,7j2,...) satisfying r; 1 = min{r;,7;2,...} for each j,
and r1; < 721 < ---. For each j, let Y; be the unpainted block whose
width is the length of (7,1, 7;2,...) and whose depth is ¢y, and whose each
column has the numbers r; 1,7; 2, . .. from the left. Arrange Y7,Y5,... from
the left, and exchange the all unpainted blocks of depth &g of the diagram
made in Step 4 for them.

The operation of (i, i2) on p changes the sign of p. Hence (i1,142)p consists
of even numbers of cycles if p consists of odd numbers of them, and vice
versa. Therefore this step exchanges the parity of the number of unpainted
blocks in the diagram.

e Step 8. Use Step 4 to Step 6 of the algorithm for f,, 4 in Theorem 1.1,
and take the corresponding partition A = n and the elements of B 4 and
Ci.

e Step 9. Put J' be the subset of {1,2,...,I(\)} such that j € J if and
only if the jth block from the left of the diagram is painted. One can see
J eEl ifJeEl, and J € Ey if JeE,,.

e

e Step 10. The elements of B, g4, E;te U Ey . and Cy are determined by
Step 8 and 9. Therefore one can define

I((blbea .. 'abl(p.))a J7 T)

€ <|_| (Bxa x By, X cg) L <|_| (Bxa x By, x cA)> .

AbFn AFn

Since this algorithm does not change the depth of the unpainted columns,
one can see I((by,ba,... b)), J,7) ¢ AD;, g

We illustrate this algorithm with an example (2,2,1,2) € B2,2.1,1),11, {2} €
By o11)2 (2,5)(3,4)(1)(6) € Ci22,1,1) where n = 6, d = 11, e = 2. One obtains

the following left diagram after Step 3, and the right one after Step 4.

. ]

1 1
2 5 3 4 6 34 2 5 6

In this case, o = 2 and p = (2,5)(6), i1 = 2, i = 5. Since (i1,i2)p =
(2,5)(2,5)(6) = (2)(5)(6), one obtains the following left diagram after Step 7
and the right one after Step 8.

. I -

1 1
34 25 6 3 4 2 5 6

Therefore we have

g6,11,2 ((27 2a la 2)7 {2}a (27 5)(37 4)(1)(6))
=((2.1,2,2,2), {1}, (3,4)(1)(2)(5)(6))

€Bea111,101 X Egq111y2 X Ca11,1)
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Since this algorithm changes the parity of the number of unpainted blocks
in the Step 7,

I((b1,ba, - b)), o) € | || (Baax EX,x Ca) | \AD;, 4,

AFn
Aeven

for ((b1,ba, ... byp), /) € | | (Baa x Ef, x Cy),

AFn
A:odd

I((b1,b2s - by)s Ji7) € || (Bra x Ef, x Ch)

AFn
Arodd

for ((b1,ba, .- by), 7)€ | || (Baa x EX, x Cx) [ \AD], 4,

AFn
Aseven

I((b1,ba, - buy), 7)€ || (Baa x By, x Cy)

Abn
Ateven

for ((b1,ba, ... by), Js7) € | || (Baa x By, x Cy) [ \AD], ., and

AFn
A:odd

I((bl,bg,. .. ,bl(u)),J,T) S |_| (B>\7d X E):e X CA) \ADfn,d,e

An
A:odd

for ((bl,bg, b)), 7') € |_| (Bxa X Ey . X C)). Since [ is involution, we

AFn
A:even

obtain bijections

dn.de,l : |_| (B)\yd X E;,e X C)\) — |_| (B)“d X E):e X C)\) \AD;,d,m

Abn Abn
Ateven A:odd

gnde2: || Brax EY,xCy) = | || (BraxEf,xCy) [ \AD], 4.

AFn AFn
Arodd A:even

Next, we define

In.des((ar,a2,...,a,),J,0) € AD;, 4.

for dy, dq satisfying dy + d2 = d and (a1, a2,...,an) € Apays J € Dy gy n—e and
o € G,, by the following algorithm:
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e Step 1. Write J = {j1,72,--,Jn—c} With 0 < j1 < jo < -++ < Jp—e <
n—1, and draw the rim of the Young diagram of the partition of d obtained
by adding parts ji, ja, . . ., je to (191292 ... n%) If j; = 0, we consider the
diagram has a row of width 0 at the bottom.

e Step 2. Split the diagram into blocks of columns by depth.

e Step 3. Split the (j,, + 1)th column from the left for 1 <m < n —e, and
paint the other e columns.

e Step 4. Use Step 2 to Step 6 of the algorithm for f, 4 in Theorem 1.1 for
the diagram, and take the corresponding A - n and elements of B) 4 and

Ch.

e Step 5. Put J’ be the subset of {1,2,...,l(\)} such that j € J' if and
only if the jth block from the left of the diagram is painted. One can see
J € Ef UE;,.

e Step 6. There are |J’| painted blocks, n — e unpainted blocks, e painted
columns, and n—e unpainted columns. Hence if A is even, n—I(\) = e—|J’|
is even and |J'| is even, therefore J' € E;;e. Similarly, J" € By if A is
odd. Now we have the element of

|_| (B)\,d X E)te X C)\) U |_| (B)\,d X E,\_,e X C)x)

AFn AFn
A:even A:odd

!/

by Step 4, 5 and 6. Moreover, this is an element of AD;, , . because the
depths of the unpainted columns in the diagram are all distinct. Therefore
one can define

gn7d7e((a1, a2y Gp), 0') € AD;Ld’e.

We illustrate this algorithm with an example

1 2 3 4 5
(O7 0, O, 0, 1) S 145757 {O, 1, 4} S D57573 and <4 1 2 5 3> S 65,

where n = 5, d = 10, and e = 2. In this case j; = 0, jo = 1 and j3 = 4,
thus we draw in Step 1 the rim of the Young diagram of (5,4, 1,0) - 10, which
is obtained by adding parts 0,1,4 to (1020304051) = (5). Hence we get the
following left diagram after Step 3. We use Step 2 to Step 6 of the algorithm
for Theorem 1.1 in Step 4, and we get the following middle diagram after the
Step 3 and the right one after the Step 4.

] ]

3 3
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Thus we obtain

1
95,10,3 ((07 07 07 Oa 1)7 {07 17 4}7 (4

=((2,2,1,8), {1},(2,5)(1)(3)(4))

€Bea1,1),10 X Egyq1y2 X C2a,1,)-

— N
N W
(SR
w
N——
N——

We can construct the inverse function

-1, /
Gndes  ADL 4. — || (Anay X Dnayne X Sp).
di1+de=d

by defining

gn,d7e,3_1 ((bh b27 ceey bl(ﬂ)), J/7 T) € |_| (An,dl X Dn,dz,nfe X Gn)
di+da=d

for ((bl, ba, ... b)), S, T) € AD/ by the following algorithm:

n,d,e

e Step 1. Use Step 1 and 2 of the algorithm for fn,dfl in Theorem 1.1, and
obtain a diagram of blocks. The ¢th block from the left is of width p; and
depth b;, and each column has number defined by 7.

e Step 2. For j € J', paint the jth block from the left. There are n — e
unpainted columns of all distinct depths.

e Step 3. Arrange the blocks by the following rules:

1. Put deeper one to the left.
2. If there are blocks of the same depth, put painted one to the right.

3. If there are blocks of the same depth and painting, put one which
has the smallest number to the right.

e Step 4. Let the depths of the unpainted columns are iy, 1is,...,i,_, With
the condition 41 > g > -+ > ip_..

e Step 5. For 1 <m <n — e, write the (i,, + 1)th row has width j,, > 0.

e Step 6. Define
g’n,d,e,?)_l ((bla 627 BERE) bl(,u.))7 J/a T) = ((a17 az, ... 7an)7 J7 U)
by the following condition:

L J= {j13j27 s ajn—e}-
2. (19129 ...n% ) is the partition obtained by removing the parts j1, j2, .. ., jn—c
from the shape of the diagram.

3. Each column of the diagram has the numbers

from the left.
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Therefore we have defined a bijection

/
g”;d,€73 : |_| (An,dl X D’ﬂ,d27n—€ X 6”) — ADn,d7e7
di+da=d

By three bijections gn.d,c,1; gn,d,e,2 and gn_d,c,3 We have constructed, now we
have a bijection

In,de * |_| (B)\’d X E)T,e x Cy) | U |_| (B)\’d X E;e x Cy)

AFn AFn
Areven A:odd
U ( |_| (An,d1 X Dn,dz,nfe X 671))
di+de2=d
— I_l (B)\deE;eXC)\) U |_| (B)\_’dXE;’eXC)\)
AFn AFn
Ateven A:odd

for d € N and even number e satisfying 0 < e < n. In a similar way, one can
construct a bijection

In,de * |_| (B,\)dXE)J:e XC,\) U |_| (B)\7d><E):eXC)\)

AFn AFn
A:even A:odd
u ( |_| (An,dl X Dn,dg,n—e X 6n)>
dy+do=d
- +
— |_| (B)\’d X EA,e X C)\) (] |_| (B)\’d X E)\,e X C)\)
Abn AFn
Ateven A:odd

for d € N and odd number e satisfying 0 < e < n. By these bijections, we
complete the proof of Theorem 2.2.
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