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ABSTRACT
The state estimation problem for systems in which observation outputs include
outliers is addressed herein. When the observation output has outliers, the accuracy
of the state estimation is dramatically worse. To overcome this problem, a novel
observer structure using multiple candidates of the estimated state is proposed.
First, multiple candidates of the estimated state are created; each candidate uses
the sensing output value of a different detection timing. If outliers occur infrequently,
eliminating candidates affected by outliers can prevent deterioration in estimation
accuracy. Our proposed observer select one from the obtained candidates of the
estimated state using a median or a weighted median operation. Through the median
operation, the estimated state that does not use the outlier value is selected from
these candidates. In addition, a method is provided to design the observer gains of
these estimated state candidates based on a reachable set of the estimated state
error, using Lyapunov-based inequalities. The effectiveness of the proposed observer
is illustrated using numerical examples.
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1. Introduction

In control engineering, state feedback control is one of the most important methods for
control systems. In state feedback control, the sum of all the state values weighted at
each time is calculated, and the calculated values are applied to the plant as an input
signal. In general, it is difficult to measure all state values with sensors; therefore, the
state observer is also used in the implementation of control systems [1, 2, 3, 4, 5, 6, 7].
The state observer is a system that provides an estimate of the internal state of a
given real system from the input and measured output of the real system. It is used in
various situations, such as when the sensor cannot be used or when not all the internal
states can be observed because of cost problems.

By including the model of the plant in the state observer, one can seek the esti-
mated state xf of the internal state x by simulating the action using the information
of input u and output y. Although state observers have been studied for a long time,
various research fields involving state observers have progressed in recent years, such
as vehicle-motion control systems [9, 10], networked control[11] systems, and cyber-
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physical systems [12]. The state estimation by the state observer and the state estima-
tion technique using a Kalman filter can be applied to the case of linear and nonlinear
systems [4]. The appropriate estimation of the state quantity of a plant plays an im-
portant role in control-system design. Various state observer design methods have been
developed to achieve satisfactory estimation performance [17, 18, 19].

In general, when a state observer is used, it is assumed that noise and disturbance
exist. It is known that the estimated accuracy is significantly degraded when problems
related to outliers [13, 14, 15, 21, 16] and packet losses [23, 24, 25] occur. In the case
of using a non-contact sensor, such as a visual sensor, outliers can sometimes occur.
Because of the influence of dramatic changes in luminance, communication obstruction
by moving obstacles, etc., there are some cases where the sensor temporarily detects a
value that is clearly different from the intended signal to be observed. In such a case,
even if the dramatic change in the value obtained by the sensor is temporary, because
the influence on the control system increases in real-time control, it is necessary to
remove the influence of the outliers appropriately. Furthermore, in networked control
[23, 24, 25], packet loss is an important issue, as well as signal quantization and time
delay. Packet loss can also be regarded as an outlier. Missing data occur when the data
traffic congestion suddenly breaks because of the limited capacity of the information
transmission. In recent years, research related to information security [26, 27] has
been advancing, and, considering the possibility of outliers arising because of data
tampering, a theoretical construction regarding the removal of the influence of outliers
is an important element.

State estimation problems caused by outliers have been studied previously [13, 14,
24, 25]. A Kalman filter and H∞ filter based on the statistical nature and frequency
characteristics of outliers were designed [13, 24]. Moreover, research regarding con-
trol systems, including packet loss, has been conducted. The performance of outlier
values applied to a Kalman filter was analyzed [25]. In previous work [15], the covari-
ance matrix of the observation noise of the Kalman filter was updated by utilizing
the observation error information from outliers. The design can also be implemented
with a policy to stop updating when the observation error is large by increasing the
covariance or positively updating if the error is small. However, there is a limit to
the correspondence of utilizing statistical properties and covariance. In particular, it
is difficult to eliminate the effect of outliers that have the possibility of changing to
unexpectedly large values because of the dynamics arising in the linear filter and the
accompanying signal processing.

In other research, however [15], robust state observers that limit the maximum value
of the error of observation output were considered. These methods correspond to set-
ting an absolute upper limit of the prediction error using dead zone components or a
threshold. Consequently, it is possible to handle the influence items in a limited man-
ner, although it is impossible to eliminate the influence of outliers. A moving horizon
approach to remove the effect of outliers was proposed for systems with a single output
[16]. In addition, a nonlinear/logical operation method that ignores outliers entirely by
using a majority decision has been proposed [21]. In other work [21], the state observer
eliminated the influence of outliers on state estimates by performing majority decision
operations on multiple observed signals. Furthermore, a state observer that eliminates
the influence of outliers by calculating thresholds by using multiple observable sen-
sor pairs and removing signals exceeding the threshold was proposed [22]. Even if an
enormous value is applied as an outlier, these methods can effectively perform state
estimation because they include a structure for ignoring that value. However, the class
of the target systems is limited because it is assumed that a plurality of output signals
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can be observed. Moreover, it cannot be applied in cases where all values are outliers
or packet losses at the same time.

In this paper, a novel state observer is proposed that eliminates the influence aris-
ing from outliers at a specific time. As an alternative to methods where states are
derived from multiple outputs [22], a method of state estimation is constructed that
selects multiple candidates of estimated values in the direction of the time axis and
then selects from the candidates. In general, the order of the state observers is equal
to or smaller than that of the plants. In this study, the aim is to eliminate the influ-
ence of higher-order outliers. By deriving candidates of multiple state estimates and
performing nonlinear processing to adopt candidates that are not influenced by the
outliers in the values of candidates, a novel state observer that has the robustness
needed to overcome outliers is constructed. As a specific nonlinear processing method,
the median is used. The values from the candidates obtained by the median, which
are not affected by the outliers, are selected. The proposed state observer is called the
“median of candidate vectors”(MCV) observer.

This paper is structured as follows. In Section 2, the principle of the state observer
and the median calculation method as a mathematical preparation are explained. In
Section 3, the MCV observer is proposed as a state observer that is robust to outliers.
First, the derivation of the candidate value of the state quantity estimate at time k+1
using the state estimate values from step 0 to N−1 is described. The estimate at time
k+1 is determined by applying the median operation to the candidate value. The state
observer algorithm is also described. In Section 4, the matrix inequality condition
for designing the observer gains based on a robust invariant ellipsoid is shown. In
Section 5, numerical simulation that confirmed that the state can be estimated with
high accuracy, even if outliers occur in the MCV observer, is described. Finally, this
research is summarized in Section 6, and the scope for future work is discussed.

The basic idea of the algorithm of the MCV observer was presented at the SICE
Annual Conference [31] and Trans. of SICE [32]. The observer gains were determined
based on the linear matrix inequalities (LMIs) for evaluating an invariant set for a
peak-bounded disturbance in [32](Japanese article). This report is an advanced ver-
sion of the presented work to generalize the multiple-input multiple-output setting.
Moreover, weighted median is addressed and corresponding numerical results are dis-
cussed in this paper.

2. Problem Formulation

2.1. Plant

This study addressed a discrete-time linear time-invariant system. The current time is
taken as k, and the dynamic characteristics of a plant are given by the state equation
as follows:

xp(k + 1) = Axp(k) +Buu(k) +Bdd(k) (1)

y(k) = Cxp(k) +Dw(k) + yout(k) (2)

Matrices A, Bu, Bd, C, and D are suitably defined matrices that correspond to the
square matrix and the inputs and outputs expressing the dynamic characteristics of
plant, and the order of the plant is m. A state of the plant is defined as xp(k) ∈ Rm,
the control input as u(k) ∈ Rmi1 , and the observed output as y(k) ∈ Rmo1 . Signals
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d(k) ∈ Rmi2 and w(k) ∈ Rmo2 are the process noise and the sensing noise, respectively.
The observability of the plant is assumed.

Here, it is assumed that the initial state xp(0) is given as xp(0) = 0 and that
the control input, process noise, and sensing noise before time k = 0 are given as
u(k) = 0, d(k) = 0, and w(k) = 0, respectively. It is assumed that the maximum
absolute values of each element in d(k) and w(k) are less than or equal to 1. In
another way, ∥d(k)∥∞ ≤ 1 and ∥w(k)∥∞ ≤ 1 hold.

The term yout(k) characterizes the outliers. The term yout(k) = 0 holds in ordinary
times. When an outlier occurs at k = k1, yout(k1) ̸= 0 holds, and the magnitude of
|yout(k1)| has no size limit. It is considered that the outlier values are drastically larger
than the noise. In particular, if yout(k) = 0, ∀k holds, it means an observed output
with no outliers. One can express the packet loss such that y(k) = 0, if yout(k) =
−Cxp(k) − Dw(k) is set. To distinguish the outliers from observations and noise, it
is assumed here that the absolute value of yout(k) is sufficiently large compared with
other signals.

2.2. Observation frequency of outliers in observed output

The detailed formulation of yout(k) is presented in this section. In this study, outliers
are supposed to occur instantly. In other words, it is considered that outliers occur
for a short period. Two integers F1 and F2 are used to characterize the outliers in the
observed output. For any time interval [k, · · · , k + F1 − 1] with time k, the maximum
number of outliers appearing in the time interval is F2. In other words, F1 determines
the time interval, and F2 characterizes the outlier occurring frequency in the time
interval. For example, in the case where an outlier occurs every 10 periods in the
observed output, i.e., a periodically observed outlier. Then, F1 = 10 and F2 = 1 are
set to characterize the outliers. Next, F1 and F2 are set based on the frequency of
outliers in the sensor output at the time of implementation. Fig. 1 shows an example
of the observed output with outliers. Large periodic outliers for two output signals.
30-periodic outliers (red mark) and 100-periodic outliers (blue mark) occur for output
signals. In this example, one can set F1 = 30 and F2 = 2, and the number of maximum
outlier occurrence times (the outliers occur for output 1 or output 2) in the time range
[k, · · · , k + 29] is one for any range with k.

In this study, it is assumed that the following condition is satisfied for F1 and F2:

F1 ≥ 2F2 + 1. (3)

In various settings for outliers in the sensor outputs, the outliers occur sparsely. In
such a case, the former assumption can be easily satisfied.

2.3. Median operation

Because the calculation cost of the median operation is small in many computer de-
vices, the median operation can be used in a wide range of research fields. For example,
it is used as a filter in image processing and is known to be effective in the removal of
salt-and-pepper noise from original images.

The median is a value located in the center of the whole data if the data are arranged
by order of magnitude. When the number of values is even, it can be obtained by taking
the average value of two numbers located at the center. For data ξ(i), i = 1, · · · , n when
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Figure 1. Example about 100-periodic and 30-periodic outliers occurred in the output signals

the values are sorted in ascending order is ξ̃(1), ξ̃(2), · · · , x̃(n). The median value ξm
is obtained as follows:

ξm =

{
ξ̃(n+1

2 ) n : odd number
ξ̃(n

2
)+ξ̃(n

2
+1)

2 n : even number
(4)

The median operator is denoted as MED[·], and the median value is given by the
following equation:

ξm = MED [ξ(0), ξ(1), · · · , ξ(n− 1)] , (5)

The weighted median filter was first introduced as a generalization of the median
filter (5). Nonnegative integer weights are assigned to each value. For the data x(i), i =
1, · · · , n, the output ξwm of the weighted median filter of span n associated with the
weights

W = [w0, · · · ,wn−1] (6)

is given by

ξwm = MED [w0 ⋄ ξ(0),w1 ⋄ ξ(1), · · · ,wn−1 ⋄ ξ(n− 1)]

(7)

The symbol ⋄ denotes duplication, i.e.,

wi ⋄ ξ(i) = {ξ(i), ξ(i), · · · , ξ(i)} (wi number of ξ(i)) (8)

When the weight wi = 1 for all i, (7) becomes the standard median filter.
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Figure 2. Block diagram of state observer with outliers

3. State Observer Using Median of Multiple Candidates

3.1. Outline

A state observer is proposed for improving the robustness against outliers (Fig. 2).
In this section, candidate state vectors are described, and the median is used as the

method for obtaining estimation values from them. Moreover, the implementation of
the algorithm is described.

3.2. Candidate of estimated state using feedforward estimation

The usual state observer uses y(k) and u(k) to estimate one step after the state of time
k. Therefore, for the case in which the observation signal y(k) at time k is replaced
by an outlier, a proper estimation cannot be made. Thus, if one uses the estimated
values from the N step precondition as candidates and selects the appropriate state
from those candidates, the estimated state x, which is not affected by outliers, can be
generated.

First, candidates of state estimates are described. In the MCV observer, the esti-
mated value at time k − i is used to estimate the state of time k + 1. Herein, the
estimated value using a previous estimated state x(k − i) is denoted as x̂i(k + 1).

x̂i(k + 1) = (Ai+1 − LiC)x(k − i) + Liy(k − i) +

i∑
j=0

AjBuu(k − j) (9)

where x̂i(k+1) represents the estimated value of the state at time k+1, and, for each
vector, only the value of y(k− i) is used as the observed output. Li is an observer gain
for obtaining x̂i(k + 1). The observed output at the other time (k − j, j ̸= i) is not
used.

For the state estimated by the MCV observer not to be affected by outliers, it is
necessary to place constraints on the number of occurrences of outliers within a certain
interval. In the above description, N is selected as the number of candidates by the
expression (9). The number of candidates N is set to satisfy the following equation
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using F1 and F2 in Section 2.2.

N ≤ F1, 2F2 + 1 ≤ N (10)

The case where F1 = 10 and F2 = 1 is considered as an example. Then, one can
select N = 3. First, if i = 0 is calculated using (9), x̂0 is given by the following
equation:

x̂0(k + 1) = (A− L0C)x(k) +Buu(k) + L0y(k) (11)

This is the same structure as the usual estimated structure of the Luenberger observer.
In addition, for i = 1, 2,

x̂1(k + 1) = (A2 − L1C)x(k − 1) + L1y(k − 1) +ABuu(k − 1) +Buu(k) (12)

x̂2(k + 1) = (A3 − L2C)x(k − 2) + L2y(k − 2) +A2Buu(k − 2) (13)

+ABuu(k − 1) +Buu(k)

is given. Here, each estimated value in i = 1, 2 transits the state in a feedforward
manner with respect to the normal state estimation value.

As an example, the case of using three state estimate candidates given by (11),
(12), and (13) is considered. One can correctly detect, with y(k − 1) and y(k − 2)
among these three candidates, y(k) = 0 by outliers. Here, it is assumed that the
estimated value of x̂0(k + 1) contains a large error. However, x̂1(k + 1) and x̂2(k + 1)
are estimated precisely. The error contained in the given estimate is expected to be
small. If a majority vote is taken among the three candidates, it is possible to estimate
the correct state. The estimation is implemented by applying this consideration.

In this study, the median is used for estimation based on candidate values. As with
the majority vote, it is expected that, among the candidates of state estimates aligned
in the order of norms, outliers’ influence will not go to the middle of the aligned ones.
If an outlier occurs at time k, the influence of outliers appears in x̂0 in the estimate of
time k+1. However, estimation can be performed correctly with x̂1, x̂2. The influence
of the outlier appears in x̂1 at the next estimation time k + 2, and the influence of
outliers in x̂0, x̂2 is not accepted. Thus, because only one of x̂1, x̂2, and x̂3 is affected
by outliers, by taking these median values, the influence of outliers can be eliminated.

Setting up an expression for i = 0, 1, 2 · · · , N − 1 makes it possible to estimate the
state via the median using the N candidate vectors of the estimated state.

From the above results, the proposed state estimation method is summarized as
follows.

3.3. Algorithm of MCV observer

The configuration procedure of the proposed MCV observer based on the above ex-
pansion is shown below. The number of state estimate candidates N is determined
using F1 and F2.

To evaluate whether x̂i(k) is affected by an outlier, the following output ye(i) is
defined.

ye(i) = y(k − i)− CAx(k − i− 1)− CBuu(k − i− 1), (14)
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Here, ye(i) can be calculated because x(k − i− 1) and u(k − i− 1) are known values,
and y(k− i) is the observed output. As an alternative expression, the signal ye(i) can
be expressed as follows.

ye(i) = CAe(k − i− 1) +Dw(k − i) + CBdd(k − i− 1) + yout(k − i), (15)

where e is the error between xp(k) and x(k), i.e., e(k) = xp(k) − x(k) holds. If one
focuses on the right-hand side of (15), the influence of yout(k − i) is greater than that
of yout(k − i− 1), w(k − i) and d(k − i− 1) when an outlier occurs.

Therefore, it is expected that one can judge whether the observed output y(k − i)
includes an outlier by focusing on the magnitude of ye(i) of (14). Because N is chosen
to be 2F2 + 1 ≤ N , the number of candidates in ye(i) that are affected by outliers,
i.e., yout ̸= 0, is less than F2. This shows that for i∗, which is the median of ye(i)(i =
0, · · · , N − 1), ye(i∗) does not contain an outlier, i.e., yout = 0. Therefore, the MCV
observer in this study uses the signal ye(i) for selecting 1 from xi(k + 1) of candidate
state estimates.

Using (9) and (14) with weighting vector T ∈ R1×mo1 , the algorithm of the MCV
observer is given as follows.

Algorithm 1 Estimation structure of MCV observer

loop
[1.] Calculate x̂i(k+ 1) for all i = 0, · · · , N − 1 by (9) and calculate ye(i) in (14).
[2.] Calculate the median to find the value i∗ = argiMED [{Tye(i)}i=0,··· ,N−1].

[3.] x(k + 1) = x̂i∗(k + 1) and move to the next step.
end loop

The proposed MCV observer algorithm is simple. Note that weight vector T should
be selected not to disappear the outliers. The number of candidates affected by the
outlier is smaller than F2. Therefore, the candidate selected by the median operation
is not affected by outliers, because of (10). The MCV observer guarantees that the
estimated state is not affected by outliers.

It is also possible to use a weighted median operation instead of the median oper-
ation in Algorithm 1. To use weighted median it is required to choice appropriate W
for selecting suitable estimated state from candidates. Condition of W for the limited
case with F2 = 1 is as follow.

2max
i

wi + 1 ≤
N∑
i=1

wi (16)

As an example of the weight W for N = 4 is as follow:

W = [4, 3, 1, 1] (17)

We can find that (17) satisfy the condition in (16). Median value is not affected by the
outlier value for any time. Then, the modified algorithm of Algorithm 1 using median
filter is given as follow.

Discussion about weight design of W is shown later part of this paper.
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Algorithm 2 Estimation structure of MCV observer with weighted median filter

loop
[1.] Calculate x̂i(k+ 1) for all i = 0, · · · , N − 1 by (9) and calculate ye(i) in (14).
[2.] Calculate the median to find the following value i∗.

i∗ = argiMED [{wi ⋄ Tye(i)}i=0,··· ,N−1] (18)

[3.] x(k + 1) = x̂i∗(k + 1) and move to the next step.
end loop

4. Parameter Design in MCV Observer

4.1. Observer Gain Design Using Robust Invariant Set

In this section, observer gains Li in (9) is designed based on the maximum value of an
evaluation output. The following error system is obtained when êi = xp − x̂i is set.

êi(k + 1) = (Ai+1 − LiC)e(k − i)− LiDw(k − i) +

i∑
j=0

AjBdd(k − j) (19)

In addition to this equation, the following evaluation output is dealt with to consider
the noise rejection performance by the MCV observer (Fig. 2).

ze(k) = Ee(k) (20)

E is an evaluation vector that characterizes the evaluation signal. When E = I in
(20) is selected, the state error is evaluated by z(k). A design method for the observer
gains Li was developed, focusing on the maximum absolute value of the signal ze(k).

An error system (19) designed based on the results of a robust invariant set for peak-
bounded disturbance reported elsewhere [28, 29, 30] is analyzed. The robust invariant
set in this method is based on an ellipsoid using a matrix inequality condition. A
theorem from previous work [28] is used to find a common invariant set for all state
candidates x̂i. By setting up a common invariant set, the state êi of the error system
stays in the invariant set for any choice of i. Thus, if one can find a common invariant
set for all candidates x̂i, the obtained set is also invariant to the state error of the
MCV observer.

First, the gain design is considered using the state set, satisfying the following
equation:

e(k)TPe(k) ≤ 1 (21)

The state error e(k) includes an ellipsoid characterized by a positive definite matrix
P . First, it is assumed that the following equation holds for a certain k.

e(k − i)TPe(k − i) ≤ 1, i = 0, · · · , N − 1 (22)

In this case, it is necessary to consider the conditions for the following equation to
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hold.

êi(k + 1)TP êi(k + 1) ≤ 1, i = 0, · · · , N − 1 (23)

If (23) holds for all i = 0, · · · , N − 1, because one state candidate is selected from
êi(k+ 1), then the following inequality holds, and (21) is a robust invariant set of the
MCV observer.

e(k + 1)TPe(k + 1) ≤ 1 (24)

The following lemma is given based on the theorem in [28] to obtain the analytical
condition of the robust invariant set using common matirix P .

Lemma 4.1. Assuming that Li is given for all i and that the noise ∥d(k)∥∞ ≤ 1 and
∥w(k)∥∞ ≤ 1 given. If the following conditions:[

ĀT
i PĀi − (1− αi)P ĀT

i PB̄i

B̄T
i PĀi B̄T

i PB̄i − αiI

]
≤ 0, αi ∈

[
0, 1− ρ(Āi)

2
]
, (25)

are satisfied for all i, the robust invariant set is given by

e(k)TPe(k) ≤ 1, (26)

where Āi and B̄i are given as follows.

Āi = Ai+1 − LiC, B̄i = [Bd, ABd, · · · , AiBd, LiD]
√
ℓ (27)

ℓ = mi2(i+ 1) +mo2 (28)

The inequality condition of Lemma 4.1 is attributed to LMI with respect to P > 0
if the scalar parameters αi are fixed. The following inequality conditions are further
considered for ze(k) defined in (20).

êi(k)
TP êi(k) ≥

1

γ2
ze(k)

T ze(k), ∀i, (29)

The symbol γ is a scalar positive variable. The necessary and sufficient conditions for
this inequality condition to hold for ei(k) are given as follows:[

P ET

E γ2

]
≥ 0 (30)

If ze(k) is obtained for ze(k) defined in (20), then the following equation holds by (29)
and (26).

ze(k)
T ze(k) ≤ γ2, ∀k (31)

The evaluation signal ze(k) is less than or equal to γ for all k by the inequality (31).
Thus, the following theorem is derived from the fact that the evaluation signal for a
given MCV observer gain, which satisfies the conditions of (30) and Lemma 4.1, is
characterized by γ.
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Theorem 4.2. Assuming that ∥d(k)∥∞ ≤ 1 and ∥w(k)∥∞ ≤ 1 are satisfied. For the
given Li, the following inequality conditions are considered:[

P ET

E γ2

]
≥ 0, αi ∈

[
0, 1− ρ(Āi)

2
]

(32)[
ĀT

i PĀi − (1− αi)P ĀT
i PB̄i

B̄T
i PĀi B̄T

i PB̄i − αiI

]
≤ 0

(33)

Given P > 0, which satisfies the inequality condition for all i, the following equation
holds for the evaluation signal ze of the system using the MCV observer of Algorithm
1.

|ze(k)| ≤ γ, ∀k (34)

Proof. If (32) and (33) hold, the following inequality holds by Lemma 4.1.

e(k)TPe(k) ≤ 1 (35)

Furthermore, the first inequality condition (32) holds. The condition (29) is satisfied,
and ze(k) is a scalar; thus, one obtains the following equation:

1
γ2 |ze(k)|2 = 1

γ2 e(k)
TETEe(k) ≤ e(k)TPe(k) ≤ 1. (36)

From the above, |ze(k)| ≤ γ holds, and Theorem 4.2 is satisfied.

Here, one can fix αi, minimize γ as an LMI problem and can find the αi that gives
the optimal value of γ. In this framework, it is important to determine whether the
given parameters αi satisfy the condition αi ∈

[
0, 1− ρ(Āi)

2
]
. However, finding these

parameters is not difficult because the search ranges are limited by [0, 1]. A method
for determining the parameters is also discussed in [28].

The next step is to develop a design problem for the observer gains based on the
analysis method characterized in Theorem 4.2. The Schur complement is applied to the
inequality constraint of (32) in Theorem 4.2. Furthermore, Yi := −PLi are regarded
as the design variables instead of Li. By applying the transformation, one can solve
the following gain design problem.

Problem 1. Find the minimum γ with P , Yi for which γ, P , and Yi satisfy the
following matrix inequality conditions for all i.

[
P ET

E γ2

]
≥ 0,

 (1− αi)P 0 (PAi+1 + YiC)T

0 αiI (PB̄i)
T

PAi+1 + YiC PB̄i P

 ≥ 0

αi ∈
[
0, 1− ρ(Āi)

2
]

In this case, the matrix inequality of Problem 1, as well as the theorem giving the
analysis conditions, can be considered as an LMI problem if the scalar parameters
αi are fixed. Therefore, as in the analysis, one can fix αi and minimize γ as an LMI
problem. Parameters αi are searched by hyperplane search that gives the optimal value
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γ. By solving Problem 1, optimal parameters P and Yi which satisfying |ze(k)| ≤ γ
are obtained. Then, the optimal observer gains Li are given by Li = −P−1Yi.

4.2. Evaluation of state candidates for weight design

A method about weight design of W is discussed in this section. The observer gain
Li for all candidate (9) is assumed to be given in this section. When we estimate
state using Algorithm 2, it is required to give appropriate setting about W. One
approach for giveW is introduced based on the robust invariant set. In Section 4.1, the
observer gains Li is designed using common Lyapunov matrix P . On the other hand,
the performance of each estimated state candidate x̂i is analyzed using an individually
assigned Lyapunov matrix Pi. It can be assumed that small upper bound rather than
γ is obtained when a certain x̂i is selected by median filter for all k. For evaluating
potential performance of each candidate x̂i, we use γi and analyze minimum γi which
satisfy the following equation.

êi(k)
⊤E⊤Eêi(k) ≤ γ2i , ∀k (37)

The inequality |Eei(k)| ≤ γi is satisfied by (37). The performance of each candidate
x̂i can be estimated by solving the following problem.

Problem 2. Find the minimum γi with Pi and αi for which γi, Pi and αi satisfy the
following matrix inequality conditions.

[
Pi ET

E γ2i

]
≥ 0,

 (1− αi)P 0 PiĀ
T
i

0 αiI (PiB̄i)
T

PiĀi PiB̄i Pi

 ≥ 0

αi ∈
[
0, 1− ρ(Āi)

2
]

When Li is designed by solving Problem 2, the following equation is satisfied.

γi ≤ γ, ∀i (38)

It can be regarded the estimated state x̂i is better when γi is small. Therefore, it is
useful for assign large value wi when γi is smaller. It is expected that γi is smaller
when i is small value because the candidate x̂i with small number i is few affected
by the process noise rather than the case with the candidate x̂i with large number i.
One approach is to consider the ratio value of 1/γi for assigning wi. To define wi, the
condition (16) should also be satisfied.

12
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Figure 3. State estimated by proposed MCV observer
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Figure 4. State estimated by traditional observer

5. Numerical Example

5.1. Verification the effect of MCV observer

The numerical example of the MCV observer is shown in this section. The plant
dynamics are given as

xp(k + 1) =

 0.7 0.5 −0.1
0 0.7 0.1

−0.3 0 0.9

xp(k) +
−1.2
−0.8
1.4

u(k) +
0.1
0.1
0.2

d(k) (39)

y(k) =

[
1 2 −1
0 −5 −0.2

]
x(k) +

[
0.01
0.02

]
w(k) (40)

A test input signal for the plant in the simulation is as follows:

u(k) = sin(0.01k). (41)
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The state estimation is performed. Problem 1 is solved by solving a semidefinite
problem. In this section, the observed output shown in Fig. 1 is used in the examples.
F1 = 5 and F2 = 1 are given based on Fig. 1 and N = 3 is selected to satisfy (10).
Then, an evaluation vector E and a weight T in Algorithm 1 are selected as follows:

E =
[
1 1 1

]
, T =

[
1 1

]
. (42)

By solving Problem 1, one obtains the following observer gains Li, (i = 0, · · · , 2):

L0 =

 0.2927 −0.1306
−0.0386 −0.1731
−0.6408 −0.3937

 , L1 =

 0.2498 −0.1386
−0.0977 −0.1624
−0.6862 −0.3211

 , (43)

L2 =

 0.1936 −0.1463
−0.1374 −0.1458
−0.6920 −0.2472


Note that optimal variables αi are obtained by hyperplane search. Fig. 3 shows the
state of the plant and the estimated state by the MCV observer with gains (43). To
compare the result, an estimated state by the well known Luenberger observer (11) is
shown in Fig. 4. Dashed lines are the state of the plant, and red lines are the estimated
state. It can be seen that the outliers in Fig. 1 do not affect the estimated state in
the MCV observer compared to the Luenberger observer. The optimal performance
by (43) is characterized by γ = 1.4064, and the following result is obtained using the
designed gains.

|ze(k)| ≤ 1.4064 (44)

Fig. 5 shows the state error between the plant state and the estimated state. The effect
of outliers in Fig. 1 is not presented in Figs. 3 and 5. Fig. 6 shows the performance
index signal ze(k). One can find that (44) is satisfied for all k from Fig. 6.

Then, the state estimation performance is compared by changing the candidate
number N . In Table. 1, γ is obtained by solving Problem 1 for each N . We can find
that when N increasing, γ becomes larger, and it is better to select small N under the
condition (10).

Table 1. Number of candidates and estimation performance

N 1 2 3 4
γ 0.7511 1.1077 1.4064 1.6053

5.2. Weighted median

In this section, effect of the weighted median is discussed using some examples. The
same plant in Section 5.1 is used in this example, and N = 4 is selected which satisfy
the condition (10). The solution γ by solving Problem 1 is presented in Table. 1 with
N = 4. The performance of each candidate x̂i is estimated by solving Problem 2 and
the results are shown in Table. 2. We can find that performance with small i is better.

Then, selection frequency of each state candidate is presented using Algorithm 1
and 2. Algorithm 2 is MCV observer with the weighted median. (17) is selected as the
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Figure 6. Performance index ze(k)

weight W. The time series of the selection of the estimated state candidate number
i is shown in Figs. 7 and 8. Fig. 7 is for Algorithm 1, and Fig. 8 is for Algorithm 2
with (17). In addition, the number of times selected for each candidate is shown in
Table. 3. It can be seen that by using weight W, the selection frequency of x̂i can be
changed. For example, the selection frequency of x̂0 is the larger in case weight W
is used. Candidates with larger values of wi are selected more often from Table. 3.
Figs. 9 and 10 show its obtained evaluation signal ze(k) for each cases. We can find
that it has potential to achieve better performance by MCV observer with weighted
median because the amplitude of ze(k) with weighted median is slightly small.

Table 2. Solution for Problem 2

N γ0 γ1 γ2 γ3
γ 0.8014 1.1084 1.4070 1.6053
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Figure 7. Selecting frequency of each state candidate
for standard median
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Figure 8. Selecting frequency of each state candidate
for weighted median
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Figure 9. ze(k) of MCV observer with standard me-
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Figure 10. ze(k) of MCV observer with weighted
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Table 3. Selecting count of each state candidate

Selection x̂0 x̂1 x̂2 x̂3
Weighted median 240 198 65 93
Standard median 121 173 163 139

6. Conclusion

This paper proposed an MCV observer that yields state estimation values indepen-
dently as candidates and uses the median of the estimated states. Because multiple
candidates are provided by the observed output y at independent sampling times, it
is possible to obtain estimated states with robustness against outliers using a simple
algorithm. This fact was verified using numerical examples, and the proposed method
was shown to be effective. Moreover, the weighted median was addressed and corre-
sponding numerical results were discussed in this paper. A design method for observer
gains based on the robust invariant set in Problem 1 was also proposed. The design
problem of the observer gains was formulated based on an LMI optimization problem.

In this case, all candidates of the state estimates are handled evenly. However, when
there is no influence of outliers, the estimation accuracy is higher for those using state
estimates closer to the current time.

16



References

[1] D. Luenberger. (1986). An introduction to observers. IEEE Trans. on Automatic
Control, 16 (6), 596–602

[2] C. C. Tsui (1986). On the order reduction of linear function observers, IEEE
Trans. on Automatic Control, 31 (5), 447–449

[3] C. H. Lien. (2004). Robust Observer-based Control of Systems with State Per-
turbations via LMI Approach, IEEE Transactions on Automatic Control, 49 (8),
1365–1370

[4] J. Kim, C. Lee, H. Shim, Y. Eun and J. H. Seo. (2019). Detection of Sensor At-
tack and Resilient State Estimation for Uniformly Observable Non-linear Systems
having Redundant Sensors, IEEE Trans. on Automatic Control, 64 (3), 1162–1169

[5] A. Sferlazza, S. Tarbouriech and L. Zaccarian. (2019). Time-Varying Sampled-
Data Observer With Asynchronous Measurements, IEEE Trans. on Automatic
Control, 64 (2), 869–876

[6] D. E. Zlotnik and J. R. Forbes. (2018). Gradient-Based Observer for Simultaneous
Localization and Mapping, IEEE Trans. on Automatic Control, 63 (12), 4338–
4344

[7] L. Wang and A. S. Morse. (2018). A Distributed Observer for a Time-Invariant
Linear System, IEEE Trans. on Automatic Control, 63 (7), 2123–2130

[8] D. Chu, T. Chen and H. J. Marquez. (2007), Robust moving horizon state ob-
server, International Journal of Control, 80 (10), 1636–1650

[9] K. Nam, H. Fujimoto and Y. Hori. (2014). Advanced Motion Control of Electric
Vehicles Based on Robust Lateral Tire Force Control via Active Front Steering,
IEEE/ASME Transactions on Mechatronics, 19 (1), 289–299

[10] Y. Wang, H. Fujimoto and S. Hara. (2017). Driving Force Distribution and Con-
trol for EV With Four In-Wheel Motors: A Case Study of Acceleration on Split-
Friction Surfaces, IEEE Transactions on Industrial Electronics, 64 (4), 3380–3388

[11] A. F. Taha, A. Elmahdi, J. H. Panchal and D. Sun. (2015). Unknown input
observer design and analysis for networked control systems, International Journal
of Control, 88 (5), 920–934

[12] R. Ma and P. Shi. (2020). Secure State Estimation for Cyber-Physical Systems
under Sparse Data Injection Attacks: A Switched Counteraction Approach, In-
ternational Journal of Control, DOI:10.1080/00207179.2020.1833249

[13] J. Ting, E. Theodorou and S. Schaal. (2007). A Kalman filter for robust out-
lier detection, Proc. of IEEE International Conference on Intelligent Robots and
Systems, 1514–1519

[14] S. Sarkka and A. Nummenmaa. (2009). Recursive Noise Adaptive Kalman Filter-
ing by Variational Bayesian Approximations, IEEE Trans. on Automatic Control,
54 (3), 596–600

[15] Y. Kaneda, Y. Irizuki and M. Yamakita. (2012). Design method of robust Kalman
filter via l1 regression and its application for vehicle control with outliers, Proc.
38th Annual Conf. of IEEE Ind. Electronics Society, 2210–2215

[16] A. Alessandri and M. Awawdeh. (2016). Moving-horizon estimation with guar-
anteed robustness for discrete-time linear systems and measurements subject to
outliers, Automatica, 67, 85–93

[17] J. J. Martinez, N. Loukkas and N. Meslem. (2020). H-infinity set-membership
observer design for discrete-time LPV systems, International Journal of Control,
93 (10), 2314–2325

[18] R. Thabet, C. Combastel, T. Raissi and A. Zolghadri. (2015). Set-membership

17



fault detection under noisy environment with application to the detection of ab-
normal aircraft control surface positions, International Journal of Control, 88 (9),
1878–1894

[19] Y. Xu, M. Fang, Y.‐ J. Pan, K. Shi and Zheng‐ Guang Wu. (2020). Event‐ triggered
output synchronization for nonhomogeneous agent systems with periodic denial‐
of‐ service attacks, International Journal of Robust and Nonlinear Control, 31 (6),
1851–1865

[20] Y. Chen, J. Lam and B. Zhang. (2016). Estimation and synthesis of reachable set
for switched linear systems, Automatica, 63, 122–132

[21] K. Suyama. (1999). Reliable observer-based control using vector-value decision
by majority, Proc. of 38th IEEE Conference on Decision and Control, 4486–4492

[22] Y. Nakamura, K. Nagai and K. Sugimoto. (2011). State Estimation via Switching
Observer for Systems with Outliers, Transactions of the Society of Instrument
and Control Engineers, 47 (2), 81–89

[23] K. Okano and H. Ishii. (2014). Stabilization of Uncertain Systems with Finite
Data Rates and Markovian Packet Losses, IEEE Transactions on Control of Net-
work Systems, 1 (4), 298–307

[24] I. C. Schick and S. K. Mitter. (1994). Robust recursive estimation in the presence
of heavy-tailed observation noise, The Annals of Statistics, 22 (2), 1045–1080

[25] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan and S. S.
Sastry. (2004). Kalman filtering with intermittent observations, IEEE Trans. on
Automatic Control, 49 (9), 1453–1464

[26] A. Y. Lu and G. H. Yang. (2019). Secure Switched Observers for Cyber-Physical
Systems under Sparse Sensor Attacks: A Set Cover Approach, IEEE Trans. on
Automatic Control, 64 (9), 3949–3955

[27] K. Kogiso. (2018). Attack detection and prevention for encrypted control systems
by application of switching-key management, IEEE Conference on Decision and
Control, 5032–5037

[28] H. Shingin, Y. Ohta. (2004). Optimal invariant sets for discrete-time systems:
Approximation of reachable sets for bounded inputs, IFAC Proceedings Volumes,
37, 389–394

[29] E. Fridman and U. Shaked. (2003). On reachable sets for linear systems with
delay and bounded peak inputs Automatica, 39, 2005–2010

[30] N. That, P. Nam and Q. Ha. (2013). Reachable set bounding for linear discrete-
time systems with delays and bounded disturbances, Journal of Optimization
Theory and Applications, 157, 96–107

[31] H. Okajima, Y. Kaneda and N. Matsunaga. (2019). State Estimation by Observer
Using Median Operation for Observed Output with Outliers, Proceedings of the
SICE Annual Conference 2019, 877–882

[32] H. Okajima. (2019). Analysis and design of MCV observer based on robust invari-
ant set for overcoming observed outputs with outliers and noises, Transactions of
the Society of Instrument and Control Engineers, 55 (12), 823–829

18




