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A Design Method of Model Error Compensator for Systems with
Polytopic-type Uncertainty and Disturbances

Ryuichiro YOSHIDA ∗, Yuki TANIGAWA ∗, Hiroshi OKAJIMA ∗, and Nobutomo MATSUNAGA ∗

Abstract : Control systems achieve the desired performance with the model-based controller if the dynamical model of
the actual plant is given with sufficient accuracy. However, if there exists a difference between the actual plant and its
model dynamics, the model-based controller does not work well and does not achieve the intended desired performance.
A model error compensator(MEC) is proposed for overcoming the model error in our previous study. Attaching the
compensator for the model error to the actual plant, the output trajectory of the actual plant is made close to that of its
model. Then, from the controller, the apparent difference in the dynamics can be smaller, and performance degradation is
drastically reduced. MEC is useful for various control systems such as non-linear systems and the control systems with
delay, and so on. In this paper, we propose an original design method of the filter parameters in MEC for systems with
polytopic-type uncertainty and disturbances. First, we show an analysis method about the robust performance of MEC
for the system with the polytopic type uncertainty based on an LMI problem. The gain parameters in MEC is designed
using particle swarm optimization and the presented analysis method. The effectiveness of the design method for the
system with polytopic-type uncertainty and disturbance is evaluated using numerical examples.

Key Words : Model error compensator, Robust control,H∞ performance, Particle swarm optimization, Linear matrix
inequalities

1. Introduction

Many control systems are designed by model-based control.
First, we obtain a dynamical model of an actual plant by us-
ing system identification or physical modeling. Then, we de-
sign a controller for the nominal model. Finally, we obtain the
desired control performance by applying the controller to the
actual plant. Control systems achieve the intended output re-
sponse with the model-based controller if the dynamical model
of the actual plant is given with sufficient accuracy. On the
other hand, the controller designed for the nominal model does
not work if there are differences between actual plant dynamics
and its model dynamics, such as modeling error, aging, and so
on. In other words, the model-based control is weak against
modeling errors and disturbances.

Robust control is a kind of control method that considers
modeling errors and disturbances. However, it is difficult to
come down to a mathematical problem from a complex design
problem. Besides, the design results of robust control often be-
come conservative performance because of robust control such
asH∞ control designs for a set of models.

A model error compensator (MEC) is proposed for overcom-
ing the model error in the previous study[1]. The conventional
robust control attaches robustness to the system by designing
a controller that works well for all models in a set of mod-
els. On the other hand, MEC attaches robustness by attach-
ing a compensator for the model error to the actual plant. The
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MEC makes the output trajectory of the actual plant close to
that of its nominal model. Then, from the controller, the appar-
ent difference in the dynamics can be smaller, and performance
degradation is reduced. As a result, it is expected that the sys-
tem with MEC is more robust and can achieve better control
performance where the controller is assumed to be designed
by the existing design method. In other words, The systems
with MEC can be together with various existing designed con-
trollers. In the previous studies[2]–[4], application examples
about welfare vehicles with MEC are presented. MEC is ap-
plied in the closed-loop system and is high accuracy compared
to the system without MEC.

It is well known that disturbance observer[5]–[7] is one of
the useful methods to make a part of the system robustly, and
it is well used and effective. Its conceptual function is similar
to MEC. If the given plant is a minimum phase and proper, we
can make a disturbance observer with a modified inverse model,
and the error of estimated disturbances approaches zero by de-
signing the filter appropriately. However, for the non-minimum
phase systems, the disturbance observer can not consist appro-
priately because the inverse system of the plant is unstable. In
such a case, it is difficult to achieve good robust performance
by using the disturbance observer. Moreover, it is also diffi-
cult to make an inverse system for many kinds of non-linear
systems. On the other hand, MEC can be applied for non-
minimum phase systems [8] and non-linear systems [9] without
a complicated extension of the system.

The MEC is unique in that for simple systems such as the
SISO system, the effect of modeling errors and disturbances
are reduced by setting the gain with a little trial and error. How-
ever, we have to design the gain appropriately for many types
of systems such as the MIMO system, the non-minimum phase
system, and so on. The design method in the previous stud-
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ies[1],[8] for these systems are mostly based on additive un-
certainty, multiplicative uncertainty, and so on. However, the
appropriate representation of uncertainty is different for each
plant. Therefore, for the systems represented by various un-
certainty, for example, the polytopic type uncertainty in state-
space representation treated in this paper, a different framework
to design MEC from previous studies is required. In addition,
the design methods proposed in previous studies are based on
frequency domain such asµ synthesis. However, when we eval-
uate the designed MEC in other evaluation indexes, such as the
peak value of impulse response, the design method proposed in
this paper is useful.

Therefore, in this paper, we propose a design method of pa-
rameters using particle swarm optimization(PSO)[10], which is
one of the meta-heuristics methods. It is one of the advantages
of meta-heuristics that they can alter the evaluation function
flexibly. This means that we can design the MEC with an arbi-
trary evaluation index by setting the evaluation function accord-
ing to the purpose. In this paper, the analysis method about the
robust performance of MEC based on LMIs, which is shown
in [11] is used as an evaluation function.

This paper is organized as follows: In chapter 2, the research
outline of MEC is described. In chapter 3, an analysis method
aboutH∞ performance of MEC based on LMIs, which is used
as an evaluation function in PSO, is shown. In chapter 4, we
propose a design method combined with PSO and the analysis
method. Finally, in chapter 5, we offer a numerical example of
the proposed method. In this paper, we assume that the actual
plant is a polytopic-type uncertain continuous LTI system.

Note thatH∞ norm of systemG is given by the following
equation.

||G||∞ := sup
ω∈R
σmax(G( jω)) (1)

where,σ(·) is maximum singular value.

2. Model error compensator
In model-based control, we obtain the nominal model of an

actual plant by system identification. Then, we design a con-
troller for the nominal model, which achieves the desired con-
trol performance. However, if there is a modeling error, it is
not able to achieve the desired control performance because it
is designed for the nominal model. A model error compen-
sator(MEC) is proposed for overcoming the model error effect
in previous studies[1],[8]. MECH is attached to plantP as
shown in Fig.1. By designing MECH appropriately, the in-
fluence of modeling error and disturbance is reduced, and the
dynamics ofP′ is close to that of the nominal model. There-
fore, from the controller, the apparent dynamics are close to
the nominal model, and thus, the controller can achieve con-
trol performance as we designed. The controller is designed
with various existing design methods. Hence the system which
is applied MEC is expected to achieve superior robustness and
control performance.

Fig.2 shows the basic structure of MEC, whereP, Pm, andD
are the actual plant, nominal model, and differential compen-
sator, respectively. MECH (represented by dashed dotted line
in Fig.2) includes nominal modelPm inside and feedbacks the
output difference of the actual plantP and the nominal model
Pm. Here, we can make the dynamics ofP′ which represented

Fig. 1: Compansated system

Fig. 2: Basic structure of MEC

by dashed line in Fig.2 close toPm if appropriate differential
compensatorD is given.

Also, The MEC is unique in that it can be used in con-
junction with conventional control systems. Fig.3 are some
application examples of MEC. Fig.3a shows feedback system
with MEC, Fig.3b shows state feedback system with MEC, and
Fig.3c shows MPC with MEC. Like Fig.3, we can design the
controller by various existing design methods. MEC manages
the removal of the effects of modeling errors and disturbances,
and the controller can be designed without considering them.
This is effective when we compose a complex system, design a
controller with MPC, and so on.

Now, we assume that the plantP is given as SISO and linear
time invariant system. The transfer function from inputu to
outputy is given as following equation:

P′(s) =
1+ Pm(s)D(s)
1+ P(s)D(s))

P(s) (2)

where, consider the case that there is no modeling error, that
is, P(s) = Pm(s) is hold. The dynamics ofP′(s) is given as
following equation:

P′(s)|P(s)=Pm(s) =
1+ Pm(s)D(s)
1+ Pm(s)D(s))

Pm(s)

= Pm(s). (3)

From Eq.3, it is clear that ifP(s) = Pm(s) holds, differential
compensatorD does not affect the system.

If there is modeling error betweenP andPm, it is desirable
that the dynamics of systemP′ include differential compensator
D is close to the nominal modelPm. The difference of the dy-
namics betweenP′ andPm is given as following equation:

P′(s) − Pm(s) =
1+ Pm(s)D(s)
1+ P(s)D(s))

P(s) − Pm(s)

=
1

1+ P(s)D(s)
(P(s) − Pm(s)). (4)
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(a) FB system with MEC.

(b) State feedback system with MEC.

(c) MPC controller with MEC.

Fig. 3: Various control systems with MEC.

As shown in Eq.4, we can reduce the difference of the dynam-
ics if differential compensatorD is set to high gain. On the
other hand, we have to design gain appropriately if the plant is
MIMO, non-minimum phase, and so on.

Most of the previous studies[1],[8] proposed the design
method of MEC based on frequency domain uncertainty, such
as additive uncertainty, multiplicative uncertainty, and so on.
Another framework is required if we design MEC for the sys-
tems with various uncertainty.

3. Analysis method about the robust performance of
MEC

In this chapter, we explain the system representation of com-
ponents of MEC and show the generalized plant to be analyzed
robust performance. Then, we describe an analysis method of
H∞ performance of MEC. This analysis method is used for PSO
as an evaluation function in this paper.

3.1 System representation of MEC

In this paper, we assume continuous-time linear time invari-
ant system. The equation of state, which represents dynamics
of the plantP is given by following equation:

ẋ(t) = Ax(t) + Bũ(t) + Bwwu(t) (5)

y(t) = Cx(t) + Dwwy(t) (6)

wheret is the current time,A is a square matrix which repre-
sents dynamics of plant, alsoB, Bw, C, andDw are appropriate
matrices which are given depending on the number of the in-
put/output. A, B, andC are assumed to have polytopic-type
uncertains and these are given as follows usingλ = [λi ] and
endpoint matricesAi , Bi , andCi with appropriate dimensions.

A =
N∑

i=1

λiAi , B =
N∑

i=1

λi Bi ,C =
N∑

i=1

λiCi (7)

where,λ is a time invariant parameter that belongs to the fol-
lowing setε:

ε := {λ ∈ RN : λi ≥ 0,
N∑

i=0

λi = 1}. (8)

The degree of the plant of Eq.5 isms, andx(t) ∈ Rms, ũ(t) ∈
Rmi , y(t) ∈ Rmo, wu(t) ∈ Rmi and wy(t) ∈ Rmo are the state,
control input, plant output, disturbance input and observation
noise, respectively. In this paper, it is assumed that the plant is
controllable and observable about arbitraryλ ∈ ε.

Also, dynamics of the nominal modelPm which uses for
MEC is given as continuous-time linear time invariant system
by following equation:

ẋm(t) = Amxm(t) + Bmum(t) (9)

ym(t) = Cmxm(t) (10)

where,Am is a square matrix which represents dynamics of the
plant, alsoBm andCm are appropriate matrices which are given
depending on the number of the input/output. xm(t) ∈ Rms,
um(t) ∈ Rmi andym(t) ∈ Rmo are the state of the nominal model,
control input and nominal model output, respectively.

Now, we consider∆A = A − Am, ∆B = B − Bm, and∆C =
C − Cm that are the errors between the model and the actual
plant.∆A, ∆B, and∆C are represented as follows using Eqs.7:

∆A =
N∑

i=1

λi∆Ai ,∆B =
N∑

i=1

λi∆Bi ,

∆C =
N∑

i=1

λi∆Ci .

where,∆Ai = Ai − Am, ∆Bi = Bi − Bm and∆Ci = Ci −Cm.
When we consider that MEC is applied to the above plantP

and the nominal modelPm, the differential compensatorD is
given by following equation:

ẋd(t) = Adxd(t) + Bd(y(t) − ym(t)) (11)

yd(t) = Cdxd(t) + Dd(y(t) − ym(t)). (12)

When we apply MEC to the plant, input to the nominal model
is given asum(t) = u(t), and input to the actual plant is given as
ũ(t) = u(t) − yd(t), whereu(t) is the output of the controllerC,
andyd(t) is the compensation input.

3.2 Equation of state and evaluation output of the gener-
alized plant

This section derives a generalized plant for the plant and the
nominal model described in previous section. Fig.4 shows the
generalized plant include MEC.

By defininge(t) = x(t) − xm(t), ξ(t) = [e(t)T , xd(t)T , xm(t)T ]T

as state andv(t) = [wu(t)T ,wy(t)T ,u(t)T ]T as input, we obtain
the following equations:
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Fig. 4: Generalized plantGe

ξ̇(t) = Āξ(t) + B̄v(t) (13)

Ā =


A− BDdC −BCd ∆A− BDd∆C

BdC Ad Bd∆C
0 0 Am

 (14)

B̄ =


Bw −BDdDw ∆B
0 BdDw 0
0 0 Bm

 (15)

where, the objective of MEC is making smaller the gap between
y andym, hence, we consider following evaluation output:

ey(t) = Cx(t) −Cmxm(t) = Ēξ(t) (16)

whereĒ = [C,0,∆C]. Note that evaluation outputey(t) is not
y(t) − ym(t) but excluded observation noise fromy(t) − ym(t).

Besides, to analyze based on polytopic-type uncertain, we
define the following matrices:

Āi =


Ai − BiDdCi −BiCd ∆Ai − BiDd∆Ci

BdCi Ad Bd∆Ci

0 0 Am


B̄i =


Bw −BiDdDw ∆Bi

0 BdDw 0
0 0 Bm


Ēi =

[
Ci 0 ∆Ci

]
, (i = 1, · · · ,N)

where, 1,1 element of̄Ai includes bilinear term ofBi andCi ,
and 1,3 element of̄Ai includes bilinear term ofBi and∆Ci .
Therefore, it cannot be a matrix polytope, but if∆B = 0,∆C =
0 or Dd = 0 is satisfied, then we can obtain following equation
which represents the dynamics of generalized plant as matrix
polytope usingĀi , B̄i , Ēi andλ ∈ ε:

Ā =
N∑

i=1

λi Āi , B̄ =
N∑

i=1

λi B̄i , C̄ =
N∑

i=1

λiC̄i . (17)

The output of systems often represents the state as it is, and
these systems satisfy∆C = 0. Also,Dd = 0, which means there
is no direct term in the differential compensator, is often used
in many previous control systems design theories. Therefore,
to satisfy the assumption is not difficult.

Also, the input-output system fromv(t) to ey(t) is expressed
asGe. The systemGe is affected by not only disturbance input
and observation noise but also inputu.

3.3 Analysis aboutH∞ performance using LMIs

This section describes the analysis method aboutH∞ perfor-
mance about systemGe obtained in the previous section. In
this section, we assume that∆B = 0,∆C = 0, orDd = 0 is hold
about the systemGe given by Eq.13. As described before, un-
der this assumption, the input and output of the systemGe can
be represented by polytopic matrices, and we can easily analyze
the system.

First, for the endpoint matrices (̄Ai , B̄i , Ēi), analysis problem
aboutH∞ performance is obtained as the following LMIs using
givenγ∞ > 0:

X > 0,


ĀiX + XĀT

i XĒT
i B̄i

ĒiX −γ2
∞I 0

B̄T
i 0 −I

 < 0. (18)

Where, let LMI constraints of Eqs.18 denote asΨi < 0, and
if we find X > 0 which satisfiesΨi < 0 for all i, noteing that
λi ≥ 0, the following inequality is hold: N∑

i=1

λiΨi

 < 0 (19)

From
∑N

i=1 λi = 1, Eqs.17,18 and 19, following LMIs are hold:

X > 0,


ĀX+ XĀT XĒT B̄

ĒX −γ2
∞I 0

B̄T 0 −I

 < 0. (20)

If X andγ∞, which satisfy Eq.20 are found, systemGe holds
the following inequality:

||Ge||∞ ≤ γ∞. (21)

Therefore, by finding the minimumγ∞ satisfying Eq.20, we
can analyze systemGe aboutH∞ performance. In other words,
the analysis problem aboutH∞ is coming down to the problem
to find a minimumγ∞ which satisfy Eq.20. This problem can
be solved easily with numerical calculations software such as
MATLAB.

H∞ norm is equal toL2 induced norm, so following equation
is established:

||Ge||∞ = sup
v∈L2,||v||2,0

||ey||2
||v||2
. (22)

In this way, we give the analysis method of MEC aboutH∞
performance.

In this paper, we described the analysis method about only
H∞ performance. However, also, LMI constraints ofH2 perfor-
mance, the peak value of impulse response, and pole placement
are described in [20]. Therefore, we can obtain these evalua-
tion indexes by setting these constraints and design MEC using
these indexes.

4. Design method of MEC using PSO
As we described in the previous chapter, if the parameters

of differential compensatorD is given, we can analyze theH∞
performance of generalized plantsGe. Hence, we provide the
parameters with meta-heuristics such as particle swarm opti-
mization(PSO), and the results of the analysis are used for eval-
uation value in the proposed method. This chapter describes
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Fig. 5: Flowchart of MEC design using PSO

the design method of MEC combining PSO with the analysis
method about theH∞ performance of MEC.

PSO is a multi-point search algorithm that simulates search
behavior such as fishes and birds. It is well known that PSO is
useful for control system design. PSO has the following fea-
tures: the concept is easy to understand, few parameters to set
by the user, and suitable for searching real number variable,
which has continuous value.

Also, meta-heuristics can be changed the evaluation function
flexibly. That is, meta-heuristics can evaluate various indexes;
thus, we can design according to the purpose.

Fig.5 shows the flowchart of a procedure to obtain parame-
ters of the differential compensatorD. Where the evaluation
value is set toγ∞ obtained by the analysis method described
in the previous section, which isH∞ performance. Note that
as described before, we can set the evaluation value as not
only H∞ norm but alsoH2 norm, the peak value of impulse
response, and so on. The position and velocity ofi-th parti-
cle (i = 1 · · ·m) are denoted byzi

x(k) = (zi
x1(k), · · · , xi

xn(k))
andzi

v(k) = (zi
v1(k), · · · , zi

vn(k)), respectively. Wheren is the
number of parameters to be designed,m is the number of par-
ticles, andk is the update count. The position means a set of
the design parameters in the differential compensatorD, and
we obtain the evaluation value by analyzing MEC using the pa-
rameters. The best solution found by whole particles, which is
the position that best evaluation value is achieved, is denoted
by g = (g1,g2, · · · gn). Also, the best solution found byi-th
particle, which means the position that best evaluation value is
obtained byi-th particle is denoted bypi = (pi

1, p
i
2, · · · , pi

n).
The maximum update count is set askmax. Details of each step
are described below.

i⃝ This process initializes variables: Set update countk to
0. Also set the positionzi

x(0) = (zi
x1(0), · · · , zi

xn(0)) and
velocityzi

v(0) = (zi
v1(0), · · · , zi

vn(0)) of i-th particle to ran-
dom value. Then, we solve LMIs given by Eq.20 and ob-
tain a evaluation value. Sometimes the evaluation value
can not obtain because the LMIs has no solution depend-
ing on the initialized value. In that case, setzi

x andzi
v to

random value again until the LMIs is solvable.pi is set to
the i-th particle position andg is set topi that best evalu-
ation value is achieved from whole particles.

ii⃝ Evaluate each particle using an analysis method aboutH∞
performance of MEC described in the previous chapter. If
the LMIs have no solution, it means that the generalized
plant is unstable, therefore the evaluation value of the par-
ticle sets to a large value as a penalty.

iii⃝ Determine completion: If update countk does not reach
maximum update countkmax, do k = k + 1 then proceed
to parameters update. If update countk reaches maximum
update countkmax, outputg as the optimal parameters of
differential compensatorD, then end the search.

iv⃝ Update position and velocity parameters with the follow-
ing equation:

zi
x(k+ 1) = zi

x(k) + zi
v(k) (23)

zi
v(k+ 1) = ρzi

v(k) + r1,ic1(pi − zi
x(k))

+ r2,ic2(g − zi
x(k)) (24)

where,ρ is a weighting factor for velocity vector before
the update.c1 andc2 are weighting factor for each term.
r1,i andr2,i are random numbers from 0 to 1 and it is gen-
erated for each particle and update count.

It is not so difficult to obtain the initialized values ini⃝ when
the number of the design parameters is not so large. To de-
crease the number of the parameters, it is useful to design the
differential compensatorD as a controllable canonical form de-
scribed later in Sect 5.1. Also, the differential compensatorD
can be designed as a PID compensator, and like these, we can
decrease the number of parameters to design. In the process of
PSO, sometimes a part of solutions becomes infeasible when
the positionzi

x(k) is updated. At that time, the evaluation value
of the infeasible solution is set to a very large value as a penalty.
Therefore, infeasible solutions do not affect other candidates of
solutions.

5. Simulation

This chapter shows a numerical example of the design of
MEC for the MIMO plant.

5.1 Conditions

The dynamics of actual plant represented by Eqs.5 and 6 is
given by following matrices asN = 4:
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A1 =


0 −1 1
0 −1.6 2
0 1 −4.8

A2 =


−0.4 −1 1

0 −2.4 2
0 1 −5.2


A3 =


−0.2 −1.2 1

0 −2 2.2
0.2 1 −5

A4 =


−0.2 −0.8 1

0 −2 1.8
−0.2 1 −5


B1 =


1 0
−1 1
2.6 5

 B2 =


1 0
−1 1
1.4 5


B3 =


1.2 0
−0.8 1

2 5

 B4 =


0.8 0
−1.2 1

2 5


C1 = C2 = C3 = C4 =

[
1 0.5 0
1 1 1

]

Bw =


0.1 0
−0.1 0.1
0.2 0.5

Dw =

[
0.01 0

0 0.01

]
.

The nominal model matricesAm, Bm and Cm are given as
follows:

Am =


−0.2 −1 1

0 −2 2
0 1 −5

 Bm =


1 0
−1 1
2 5


Cm =

[
1 0.5 0
1 1 1

]

where, the nominal model is the center of endpoint matrices of
the plant, that meansλi = 0.25 (i = 1, · · · ,4).

Also, differential compensatorD is designed with the con-
trollable canonical form like the following matrices:

Ad =


0 1 0

zx1 zx2 zx3

zx4 zx5 zx6

 Bd =


0 0
1 zx7

0 1


Cd =

[
zx8 zx9 zx10

zx11 zx12 zx13

]
Dd =

[
zx14 zx15

zx16 zx17

] (25)

By designing with a controllable canonical form, the number of
variables to design decreases, therefore the number of dimen-
sions to search decreases, and efficient search is expected.

Maximum update countkmax sets to 100 and the number of
particles set to 50. The weighting factorρ, c1 andc2 set to 0.8,1
and 1, respectively.

The initial values of the position and the velocity are ran-
domly selected in the ranges we set. These are set to
[−10000,10000] and [−10,10], respectively. Considering that
MEC reduces the influences of disturbances and modeling er-
rors by high gain feedback, the range of initial value of the po-
sition is set to large compared with the velocity.

5.2 Design results of MEC

The following is the design results of differential compen-
satorD for the plant described in the previous section:

Ad =


0 1 0

−6876.04 −2314.40 5421.53
9503.05 −1406.48 −8845.41

 (26)

Bd =


0 0
1 −5273.36
0 1

 (27)

Cd =

[
237.54 −7261.59 4367.41
−6771.48 −7585.91 −4548.58

]
(28)

Dd =

[
3536.44 −342.39
−1868.22 7496.95

]
(29)

where, apply the above differential compensatorD to plant and
analyze the generalized plantGe. Then we obtainγ∞ = 0.0167,
therefore following formula holds:

||Ge||∞ ≤ 0.0167. (30)

Note that the design result may have large negative poles or
be high gain. However, there is no problem for practical usage.
If these have to be small due to some constraints, we can impose
these easily, and this is one of the advantages of using the meta-
heuristics design method.

5.3 Verify the design results

We compose MEC shown in Fig.2 using differential com-
pensatorD designed in the previous section to verify the ef-
fectiveness of the design method. The actual plants are given
randomly by selecting multiple points in the polytope, and sim-
ulations are performed for these plants.

The control inputu is given as 0.2 from t = 0 to 20. Distur-
bance input and observation noise are given as random noise,
which inputs fromt = 0 to 20 and follows the normal distribu-
tion with average set to 0 and standard deviation set to 1. Fig.6
shows the response of the systems with MEC, each plant only,
and ideal. As shown in Fig.6, for the plants in the polytope, de-
signed MEC reduces the influence of the random noise. Also,
Fig.7 shows the evaluation outputs of the plant in the polytope
with the noise. As shown in Fig.7, designed MEC improves
the evaluation output compared to the system without MEC.
The ratio ofL2 norm from the random noise to the evaluation
output is obtained as||ey||2/||v||2 = 0.0070 and it satisfies the
analysis result Eq.30.

In addition, the control inputu is given as 0.2 from t = 0
to 20. Disturbance input and observation noise are given as 0.2
from t = 10 to 20. Fig.8 shows the response of the systems with
MEC, each plant only, and ideal. From Fig.8, for the plants in
the polytope, designed MEC reduces the influence of the step
type disturbance. Also, Fig.9 shows the evaluation outputs of a
plant in the polytope to the step type disturbance and designed
MEC improves the evaluation output. The ratio ofL2 norm
of evaluation output to the step type disturbance is obtained as
||ey||2/||v||2 = 0.0049 and this satisfies the analysis result Eq.30.

It is shown that MEC designed by the proposed method
works well and reduces the influence of the disturbances and
modeling errors.

6. Conclusions
In this paper, we proposed a design method of MEC com-

bining particle swarm optimization with an analysis method
aboutH∞ performance of MEC. First, a system representation
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Fig. 6: Response to random disturbance.
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Fig. 7: Evaluation outputs to random disturbance.

Fig. 8: Response to step type disturbance.
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Fig. 9: Evaluation outputs to step type disturbance.

of components of MEC is given, and generalized plantsGe is
derived. Then, we described the analysis method aboutH∞
performance of generalized plants based on LMIs. The analy-
sis method with LMIs is used as an evaluation scheme in the
proposed method. By altering the evaluation function, we can
also design MEC according to the purpose. For example, anal-
ysis conditions ofH2 performance, the peak value of impulse
response, and pole placement are derived as LMIs[20]; thus,
we can set the evaluation function to the evaluation index. Fi-
nally, a MEC design example is shown in numerical simulation.
We compose MEC using the design result and show response

waveform to the random and step disturbances. It shows that
designed MEC can reduce the influence of them. Also, we con-
firmed that the system with MEC satisfies the analysis result.

Future work will apply the proposed method to the non-
minimum phase system and unstable system. In previous stud-
ies, it is suggested that the compensation structure of MEC,
which uses a parallel feed-forward compensator for the non-
minimum phase system. For unstable systems, we can design
MEC by designing a controller, which makes the plant stable in
advance. Thus, it is expected that the proposed method in this
paper is applied to the non-minimum phase system and unstable
system by deriving the generalized plant, including a parallel
feed-forward compensator and the MEC, respectively.
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