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Model Error Compensator with Parallel Feed-Forward Filter

Gou IcHimasa *, Hiroshi Okaaiva *, Kosuke Qwumura *, and Nobutomo Mrsunaca *

Abstract : Design methods for control systems based on plant models have been developed for many years. If a mathe-
matical model is accurately obtained from the input-output relation of a plant, then the designed controller for the model
performs well for the control system connected with the plant. However, the desired control performance might not be
achieved when there is an undeniable modeling error. To overcome this problem, the authors proposed the model error
compensator(MEC) to minimize théfect of the modeling error between the plant and model. The MEC works well for
many control systems, such as unstable systems and non-linear systems. However applying the MEC to non-minimum-
phase plants is flicult because of their control system structures. Non-minimum-phase plants are well known for being
difficult to control. This paper proposes an MEC with a parallel feed-forward filter(PFF). The PFF is used to cancel
the non-minimum-phase characteristics of the plant. Tifectveness of the proposed method is illustrated through
numerical examples.

Key Words : Internal model control, Non-minimum-phase system, Model error compensator.

1. Introduction plant and the PFF as a minimum-phase plant. As a result,

Design methods for control systems based on plant model§€signing a compensator with high model error suppression
have been developed for many decades. If there is no modelerformance is desirable. Théfectiveness of the proposed
ing error between the plant and its model, the desired outpufM€thod is illustrated through numerical examples.
can be achieved using the designed controller. However, the
desired output might not be achieved when there exists a mod-
eling error because of the variation of the plant parameters and-1 Basic idea

2. Model error compensator

the approximation errors. The basic idea of the standard MEC[1] is presented in this
A model error compensator(MEC) has been proposed forsection.
overcoming the fect of the modeling error[1]. The MEC com- In the model-based control systems design, control systems

prises a model component and an error feedback component. #re designed through the following steps. First, a nominal
works to minimize the modeling error between the plant and themodel is derived from the output of a plant and physical laws.
model. The plant compensated by the MEC is used instead oNext, a controller for the derived modél,, is designed as
the plant itself. If the compensated plant is similar to the modelshown in the upper part of Fig. 1. The outputin Fig. 1
in its input-output relations, it can be expected to achieve a deis the ideal output. Finally, the designed controller is applied to
sired output by applying the designed controller for the model.the plantP as shown in the lower part of Fig. 1.
The MECs have shownfiectiveness when used for electric ~ When there is no dierence between the nominal model and
wheelchair control[2], vibration control[3], non-linear[4] and the plant, the ideal outpyt, is obtained as the actual output
multiple-inpufmultiple-output(MIMO) systems][5]. by using the controller designed by existing studies. However,
In previous research[1], the MEC has minimized the model-if the dynamics of the model and the plant are not similar, the
ing error when a high gain compensator is designed. Thereforeactual outpuy is not similar to the ideal outpwt,. Therefore,
it is difficult to apply the MECs to the non-minimum-phase it is necessary to suppress the model error between the nominal
plants having time delays or unstable zeros as this would remodel and the plant.
quire designing a high gain compensator, which is challenging To minimize the model error, we have considered a compen-
for such systems. sated system, as shown in Fig. 2. The compenga(ey sup-
This paper proposes an MEC with a parallel feed-forward presses the model error between the nominal mBgés) and
filter(PFF). In the simple adaptive control(SAC), the PFF is athe compensated systePg(s). A control system structured by
filter that compensates a plant characteristics to allow for easyising the compensated systéf(s) instead ofP(s) is shown
design of the controller[6]—[11]. In this paper, a PFF is used toin Fig. 3. If the model error betwedRy(s) and P¢(s) is min-
overcome the non-minimum-phase characteristics of the plantimized by the compensatat(s), then the output of the com-
If the PFF that overcome such characteristics is designed, thpensated systeif.(s) is similar to that of the nominal model
MEC compensator regards the extended plant comprising th&,(s). Therefore, the ideal output is obtained when there exists
the model error between the nominal model and the plant.
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non-minimum-phase systems. Therefore, applying the MEC to
the non-minimum-phase plants in [1] is left to future works. In
_____ pc_ -0~ this paper, a new structure for minimizing the model error for
the non-minimum-phase plants is proposed.

Fig. 2 Compensated system
3. Main result

T U
_’Controller c= P. _T_y> 3.1 Non-minimum-phase plants and model
| Plants with non-minimum-phase characteristics are de-

Fig. 3 Control system using system shown in Fig.2 scribed by the following equation.

N
this figure,P(s) is the plantD(s) is the diferential compensator P(s) = Py(s)e™ts n S__f' + Ap(9) ()
andPy(s) is the nominal model of the pla(s). =1 StT4
The diference betweepandy, is used as the feedback sig-
nal and the compensatd@(s) reduces its model error. The
transfer function fromy; to y can be represented as follows:

1+ Pn(s)D(s)
1+ P(s)D(s)

Po(9) is a transfer function of a stable minimum-phase system,
Z represents unstable zer@sjs the complex conjugate af,
andL expresses the time delay. Plants with no time delay can
be expressed bl = 0. If plants have no unstable zeros, then
N is set to zero to express the plant characterisfiggs) is an
additional model error. Moreover, the nominal model is given

Pc(s) = P(9) 1)

When the planP(s) is equal to the nominal mod&(s), the

transfer function becomd®y,(s) for any D(s). This fact can be as follows.
confirmed from Eq. (1). s—z

On the other hand, if there exists a model erxp¢s) between Pm(s) = Po(9)e™® l—[ stz (4)
P(s) and Pm(s), the MEC suppresses théfect for outputs by =1

the error. WherP(s) is represented &3y(s) + Ap(9), the diter- 3.2 MEC with PEF
ence between the compensated sysiR(s) and Pr,(s) can be

. In this section, the proposed structure of an MEC using a PFF
written as follows.

is explained. Fig.5 shows the proposed structure of the MEC.
D(s) is a compensator arf(s) is a PFF. In Fig.4, the feedback
Ap(9) ) signals to the compensatbx(s) are generated from theftgr-
1+ P(s)D(s) ence betweely andy,. Meanwhile, in Fig.5, the dierence
betweery; andyn: is used as the feedback signal. The transfer
function fromuc to y(s) is described by the following equation.

1+ (Pm(s) + F(9))D(s)
1+ (P(s) + F()D(s)

Pe(s) = Pm(s) =

Following Eqg. (2), the MEC minimizes the modeling error
when a high gain compensatbx(s) is designed[1]. The de-
sign method of compensatbx(s) which is shown in Fig.4 was
presented in [1].

The MEC has similar concept of the disturbance observer.

In case of the disturbance observer, an inverse model of thél: casti tr}[e plafnt |fs eqtylvalljent to the ?omlnag)mofcﬁe,l((sé:
plantis required to compensate tHeeet of the disturbance and (8)): the transfer function become¥s) for anyD(s) from Eq.

the model error. It is diicult to apply disturbance observer to (5). Moreover, ifPr(s) + F(s) becomes a stable minimum-

such as non-linear systems, MIMO systems and non-minimum-phase system, the design problemiX(§) can be handled in

phase systems. On the other hand, the MEC does not need tljjge same framework as in previous research[1]. Therefore, it

inverse model of the plant in the compensator. Therefore, dels Necessary to design a compensals) that has high model

sign degree of freedom is larger in the MEC. The MEC showeder:_iOr suprp])rejsu_)n perfo(;_rr_lanc% dD foll )

effectiveness for electric wheelchair control[2], vibration con- ere, the design conditions &{(s) andD(s) are as follows:

trol[3], non-linear systems[4] and MIMO systems[s)]. C1: The diference betweeR.(s) andPr(s) is suppressed.
However, it is dificult to apply the MEC to the non-

minimum-phase plants with time delays or unstable zeros, beC2: P.¢(s) is stable for any give®(s).

Pe(s) = P(9) ®)
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Next, case (i)n = 0, L # 0 is considered. When the
plant has a time-delay;(s) is taken to be the Smith predic-
tor[9],[10],[13]. Thus,F(s) is represented as

F(9) = Po(s)(1 - ™). (10)

Finally, case (iii) wheren # O,L # O is consideredF(s) is
created by combining the results (i) and (ii). First, the following
F1(s) is defined to overcome the time-delay component:

Fi(9) = P9 [ | sra @&t (11)
i=1

Fig. 5 Block diagram of proposed MEC with PFF

Furthermore, to overcome undershob(s) is designed us-
C1 and C2 are the same conditions as in previous researcing Eq. (9) for virtual modelP;(s) = Pu(s) + Fi(9) =

[1]. The main purpose is to satisfy C1. C2 concerns with thePy(s) [T7L,(s - z)/(s + z). Then,F(s) can be created by us-

stability of the entire compensator. ing sum ofF(s) andF,(s) as follows:
First, C1lis considered. When the pl&s) involves a model
error Ap(s) (P(s) = Pm(s) + Ap(9)), the diference between F(s) = Fa(s) + Fa(s) (12)

Pct(s) andPr(s) is written as o
Thus, the PFH-(s) that overcomes the non-minimum-phase

Pct(S) = Pm = v(9)Ap(9) (6) characteristics can be designed even when the plant has the
characteristice # O, L # 0.
3.3.2 Design oD(s)

In this section, the design method for the compensB{(g)
based on [1] is shown. From the results of the previous section,
each design condition C1 and C2 can be handled &&.acon-
trol problem. Therefore, it is possible to consider the following
design problem regarding(s) in Fig. 5.

J = sup|Weyll, (8) [Problem1] Find aD(s) that minimizes the following evalua-
A tion functionI'y:

wherey(s) is described as
1+ F(s)D(s)
1+ (P(s) + F(9)D(9)°

From Eq. (6), the model error is suppressed by minimizing
v(s). Thus, the following evaluation functiahis introduced:

¥(8) = ()

whereWg(s) is a weighting function. If the evaluation function
J is minimized, the model error can be suppressed. I'1 = sup
Next, C2 is considered in order to satisfy robust stability. If Ar()

the stability condition of the loop transfer functi@{s)(P(s) +  whereWs(s) is a weighting function. The constraint condition

We(9 ! H

1+ (P(s) + F(9))D(9) Il (13)

F(9)) is satisfied, thetP;¢(s) is stable for anyP(s). is as follows:

3.3 Design of filters in proposed systems e D(s) is a robust stabilization controller for the feedback
In this section, first, the design method of the FH[E) for system with loop transfer functiofP(s) + F(s))D(s).

overcoming the non-minimum-phase characteristics is shown.

Next, the design method of compensalxs) is explained us- In Probrem1, the model error between the transfer function

ing the designed (s). from uc to yr andPr(s) + F(S) is evaluated. Here, each condi-

3.3.1 Design of(s) tion in Probrem1 is given as thél,, norm. WhenPy(s) + F(9)

The design method of the PAHS) is considered when the  is considered as the nominal model, it is a minimum-phase sys-
plant defined in Eq. (3)is @# 0,L =0, (i)n=0,L#0and tem owing to the designei(s) in 3.3.1. Furthermore, the de-
(iii)n # O, L # O respectively. sign problem is equivalent to that in [1], because the model er-

First, case (i)n # O,L = 0 is considered. WheF(s) is ror Ap(S) is given an additive erroProbleml is the standard
added to the nominal modBl(s), the systenPp(s) with F(s) synthesis problem and can be solved numerically by MATLAB
must become the transfer function of the minimum-phase char# Synthesis tool box.
acteristics. Here, iD(s) is set to high gain, then minimizing Therefore, it is possible to obtain the numerical solution of
We()F(5)/(Pm(9)+F(9)) is effective for the minimization prob-  D(8) by using the numerical calculation software such as MAT-
lem of J. ConsequentlyF(s) is designed using the following LABt0 solve theH,, control problem. Moreover, it is expected

evaluation function: that a smallel; will be obtained becausen(s) + F(s) is the
F(9) minimum-phase plant. This leads to suppression of the model
= [|W, .
g ' e e ” ©) error

In previous research[1], when a nominal mo#ég|s) has a
Design method of the PFF can be regarded as a minimizatiotime delay, the structure of the MEC in Fig. 4 could not design
problem ofJ under the minimum-phase condition. This is one a compensatob(s) based on aml,, control problem. In con-

of the contributions of our paper. The evaluation function is trast, using the proposed structure, a compenda¢srcan be
minimized by using an optimization technique such as the pardesigned in the case of the nominal moBg(s) with the time
ticle swarm optimization(PSO)[12]. delay, because the dead time is ignored by the PR
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3.4 Elimination of constant disturbances and steady-state Fi(9) = —(s-3) (1- e—O.SS) (20)
errors (s+1)(s+2)

In this section, an elimination method of a constant distur- The filter F»(s) is designed by minimizing Eq. (9). PSO al-
bance and a steady state error is discussed through limiting thgorithm is used to minimize Eq. (9) under the condition that
structures ofD(s) and F(s). WhenF(s) = 0, the proposed Py, + F is a stable minimum-phase system. Detailed design se-
structure in Fig. 5 is equivalent to the traditional one in Fig. quence is presented in Section A. As a result of PSO algorithm,
4: the mentioned problems are eliminated by Ei{s) with the the following filter F,(s) is obtained.
integrator shown in [1].

Here, it is assumed that the structuB¥s) andF(s) are given

114s* + 0.518s
as follows. . FoS) = T1as 3299 + 242571 1)
D(s) = gDo(S), F(s) = sFo(s) (14) Here, to confirm theféectiveness oF (s), the step responses

of Pn(s), F(s) and Py (s) + F(s) are shown in Fig.7. In this
. ' - g figure, dashed, dotted, and solid lines show the step responses
spectively. For examplé;(s) in Eqg. (10) satisfies the condition of Pu(S), F(S) andPn(s) + F(S) respectivelyE (s) compensates

Sh°YV“ In Eq. (14)' L any undershoot and time delay Bf,(s). Therefore, the input-
First, we consider the elimination of steady-state errors WhenOut ut relation oPy(s) + F(s) is regarded as a minimum-phase
a step inpuu(s) = 1/sis applied. An error signal is derived as P m 9 P

where,D(s) andF(s) have a pole as = 0 and zero as = 0O, re-

) system.
follows: Fig.8 shows the Bode diagramskf, andP,(s) + F(s). Gain
&(9) = ¥(9Ap(9)0(9) (15) diagram off(s) is also shown in Fig.8. We can find that phase

delay of Py(s) + F(s) is smaller than that dPy(s), obviously.

Next, the compensatd(s) is designed based on the design
A ) ) method of [1]. When this method is used, it is necessary to set
we obtain the following equation: the weighting function(s). To suppress the model error, es-

S(1 + Fo(s)Do(9)) (16) pecially in the steady state, the functidfy(s) is set as follows:
s+ (P(s) + sFo())Do(s) 100
From Eq. (16),y(s) has zero at = 0 as long a$(s) does not We(s) = (10s + 1)
have zero at = 0. Thus, it is confirmed that the steady-state As a result, the following compensatd(s) is obtained.
error ofé(s) becomes zero

Next, the case where a step disturbadde applied to the o . . .
inputu in Fig.5 is considered. The transfer functidy fromd t
toyis represented as : : :

_SPS)( + Fo(s)Do(s)) a7)
Y7 5+ (P(9) + SFo(9)Do(9)

From Eq. (17), if 1+ Fo(0)Dg(0) is not equal to zerdlyq has
zero ats = 0. Therefore, it can be seen that the influence of a
step disturbancd is removed.

From the above results, whdd(s) and F(s) have an inte-
grator and zero a$ = O respectively, steady-state error can be
eliminated. Furthermore, F(s) is designed based on a Smith

&(s) becomes zero at a steady state regardless(@), provided
thaty(s) has zero as = 0. By substituting Eq. (14) in Eq. (13),

() =
(22)

-4 2 0 2 4

predictor in Eq. (10), then itis possible to remove a steady-state 10 10° Frequensy (adls) 10 10
error automatically because the desigh€d) necessarily has
zero ats= 0. Fig. 6 Gain diagram oAAp(s)

4. Numerical examples
To show the #ectiveness of the proposed method, a non-

minimum-phase plant is considered. The transfer function of —_.p
the plant is described as follows. _pm+,:
—(s-3) 0.1 _05s o F
P(s) = A ' 1
© ((s+ D6+2) s+ Of (18)
IAlleo < 1

Ap(9) in the simulation are shown in Fig.6.

The nominal model is

—(s=3)  _oss : :
—— e, 19 — i
(s+1)(s+2) (19) 0 5 10 15

i

First, the PFA=(s) is designed. From Eq. (11) and Eqg. (19), mets]

the filter F1(s) is designed as follows. Fig. 7 Hfect of PFF forP(s)

Pm(s) =
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D(s) = Dum(S) (23) from u; to y; and Py (s) + F(s) in Fig.5 , step responses of
Dden(S) Pcf(s) are shown in Fig.12. Solid black and dashed red lines
Drun(S) = 1.41x 10%s" + 1.22x 10°s° + 4.35% 10°S° represent the outputs &.¢(s) andP,(s) + F(s), respectively.
1812% 10P<* + 8.40% 10P<3 + 4.63x 1P From Fig. 12, the designed compensaigs) suppresses the

model error betweeR.;(s) andPm(s) + F(s). This shows that

+111x 105+ 4.08x 10 the designed compensatdfs) satisfies the design conditions

Deen(9) = S +1.98x 10%s" + 1.07 x 10°s°

in Problem1.
+4.31x 10°s° + 594 x 10°s* + 3.18x 10*s° From this result, we can confirm th&ectiveness of the pro-
+5.36x 10°? + 3.30x 10°s + 6.65 posed control system.

[Case B Performance for a sine wave
Output responses, that a sine wave (&ifY) is used as input
From Fig. 9, the high gain compensamys) can be designed for P(s), are shown in Fig.10. Solid black and dashed red lines
in the low-frequency domain, which is influenced substantially show the responses 6f(s) and P(s), respectively. The re-
by the model error . The above design results have been verifiedponsey are dtferent from the output of the nominal modgl
by the simulations. Theffectiveness of the proposed method because of the model error. The responses of the compensated
is confirmed here by inputting step and sine waves. systemP(s) are shown in Fig. 14. Solid black and dashed red
[Case A Performance for a step input lines are responses BE(s) andPpy(s), respectively. Comparing
First, step responses B(s) without a controller are shownin  Fig. 14 with Fig. 13, confirms that variation from the output of
Fig.10. Solid black and dashed red lines denote the responsdbe nominal modey, is suppressed.
of P(s) andP(s), respectively. It can be seen that the responses In the same manner as@ase Ain order to confirm that the
of P(s) are changed by the influence of the model error. designed compensat@(s) satisfies the design conditions in
Next, step responses of the compensated syBi€s) using Probleml, step responses 8%¢(s) are shown in Fig.15. Solid
the proposed control system are shown in Fig. 11. Solid blackblack and dashed red lines show output®gf(s) andPy(s) +
and dashed red lines denote the responsé% (@ and P (s), F(s), respectively. Fig.15 shows that the designed compensator
respectively. In comparison with Fig.10, it is clear that the in- D(s) suppresses the model error betwdm(s) and Ppy(s) +
fluence of the model error can be suppressed, especially in thE(S).
steady state. Therefore, the proposed control systemfigetive for a va-
Here, to verify whether the designed compensat(s) sup-  riety of the input signals.
presses the model error between the transfer funddigs) .
5. Design of proposed compensator for MIMO plants
The proposed system is applied to MIMO systems in this sec-
tion. The block diagram of the compensated sysEyg(Ss) is

N
(=]

(=)

3_20.” shown in Fig. 16, for the case where the plant hasputs and
2 ol n outputs.
§_60. The PFFF(s) can be designed using the design method
80 shown in section 3.3.1. The designégs) must satisfy the
50 condition that each of the input and output characteristics of
0

Pm(s) + F(s) becomes a minimum-phase characteristics.

The design method dd(s) is considered. IProbrem1l, the
designedD(s) suppresses the model error between the trans-
; : g fer function fromu; to ys and Py(s) + F(s) in Fig.5. Here,
-250L - 1;" > - \ in Fig.16, the diference between the transfer functiBge(s)

Frequency (radls) from u; to ys and Py (s) + F(9) is given as follows, with the
subscripts omitted:

Phase (deg)
i
o
(=]

Fig. 8 Bode diagram oPy(s) andPm(s) + F(S)

w0 . . . Pcr - (Pm + F)
: ' ' = (1 +(P+F)D)}(P+F + PD(Py + F) + FD(Py + F))
SOp —(Puw +F)
sl = (1 +(P+F)D)"Ap
= €Ap (24)

Magnitude (dB)
w
(=}

wherel is ann x n unit matrix. €’(s) in Eq. (24) is the matrix
representation of an element in Eq. (25). As a resuld(s)
for MIMO systems can be designed because the design method
of the MEC for MIMO systems has been shown in [5]. There-
: : : fore, the following design problem regardimys) for MIMO
10° 10° Frequeﬁgi aty 10° 10* systems in Fig.16 can be considered.
(Problem2] Find aD(s) that minimizes the following evalua-
Fig. 9 Gain diagram ob(s) tion functionI',:

IN)
=]
T

QO o\
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0 5 10 15 0 5 10 15

time[s] time[s]
Fig. 10 Step responses B(s) Fig. 13 Outputs oP(s)
-y
---ym
0 5 10 15 0 5 10 15
time[s] time[s]
Fig. 11 Step responses B§(S) Fig. 14 Outputs oP¢(s)
—f
- = -ymf
0 5 1.0 15 0 5 1.0 15
time[s] time[s]
Fig. 12 Step responses Bf¢(9) Fig. 15 Outputs oP¢¢(9)
Ip= SL:F))“We(S)(l +(P(3) + F(9)D(9) ., (25) el
Ar(s Ui

whereW(s) is a weighting function. The constraint condition
is given as follows:

e D(9) is the robust stabilization controller for the feedback
system with loop transfer functiof(s) + F(s))D(s).

Yrn

As explained above, the PHHs) and the compensat@¥(s) “— ) /
can be designed even when the plant is a MIMO system. \P/
CF
6. Conclusion Fig. 16 MEC with PFF for MIMO system

This paper proposed an MEC with a PFF. A design method
that uses the PFF to overcome a non-minimum-phase charapensator using the PFF was described. Simulations confirmed
teristics was shown. Moreover, a design method for the com+that the compensator with high model error suppression perfor-
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mance can be designed. Theeetiveness of the MEC with the
PFF was illustrated through numerical simulations.
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Appendix A PSO algorithm

a s+ as

Fa(s) = B+ +ass+1°

(A.1)

[14] K. Zhou, J.C. Doyle, and K. Glover : Robust and Optimal Con- E(p) is determined.
trol , Prentice Hall, 1996. Mini h diti isfied
[15] M. Morari and E. Zafiriou: Robust Process Control, Prentice E(p) = J(P) |n|mym phase condition satisfie
Hall, 1989. Epen Otherwise
[16] tl<ear17r1ls\].;\os(§gom + Advanced PID Control, Instrumentation Sys- Penalty term is used if stable minimum-phase condition is not

satisfied. The penalt¥gen is the larger positive value com-
pared to a value qff (p) which is an acceptable solutio&(p)
becomes large value if the minimum phase conditioRgf F
is not satisfied.

The position and the velocity ¢fth particle are denoted as
pi andAp;, respectively.p; is updated based on the following
update laws.
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= pi+Ap (A.2)

AP = woAp; + wirand,j(Phpess — PY) (A.3)
+w2rand2,i(ptgbest_ p})

t denote the iteration number and its initial valug is0. The
maximum iteration numbeax is given as 200 in this paper.
wp, w1 andw, are the weighting cdicients which are given
as positive values. The random numbers farohd rand; are
selected in the range [0]. In (A. 3), ptpbesu. means the personal
best solution which is determined as follow:

| e = ar min  E(p).

Pobess g xe(pllj=12...t} (® (A-4)
Pybest MeaNS the global best solution which is determined as
follow:

pgbest = arg min ]E(p). (A.5)

Xe(Phpes =121
Then, PSO algorithm is given as following steps:
PSO algorithm

e Step I Sett = 0. Fori = 1,---,m, initial position piO
and veIocityApi0 are selected randomly and evaluate the
corresponding objective functidh at each position.

e Step 2 Updatep‘pbesu. and p;bestby (A.4) and (A.5), re-
spectively. Then, apply update laws (A.2) and (A. 3) for
all particles, and go to Step 3.

e Step 3 Evaluate all positiorp! by (A. 2). Sett =t+1 and
go to Step 2 ift < tmax. Else, updatei ; and i,

By using PSO algorithm, Eq. (21) is obtained.



