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Model Error Compensator with Parallel Feed-Forward Filter

Gou ICHIMASA ∗, Hiroshi OKAJIMA ∗, Kosuke OKUMURA ∗, and Nobutomo MATSUNAGA ∗

Abstract : Design methods for control systems based on plant models have been developed for many years. If a mathe-
matical model is accurately obtained from the input-output relation of a plant, then the designed controller for the model
performs well for the control system connected with the plant. However, the desired control performance might not be
achieved when there is an undeniable modeling error. To overcome this problem, the authors proposed the model error
compensator(MEC) to minimize the effect of the modeling error between the plant and model. The MEC works well for
many control systems, such as unstable systems and non-linear systems. However applying the MEC to non-minimum-
phase plants is difficult because of their control system structures. Non-minimum-phase plants are well known for being
difficult to control. This paper proposes an MEC with a parallel feed-forward filter(PFF). The PFF is used to cancel
the non-minimum-phase characteristics of the plant. The effectiveness of the proposed method is illustrated through
numerical examples.
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1. Introduction

Design methods for control systems based on plant models
have been developed for many decades. If there is no model-
ing error between the plant and its model, the desired output
can be achieved using the designed controller. However, the
desired output might not be achieved when there exists a mod-
eling error because of the variation of the plant parameters and
the approximation errors.

A model error compensator(MEC) has been proposed for
overcoming the effect of the modeling error[1]. The MEC com-
prises a model component and an error feedback component. It
works to minimize the modeling error between the plant and the
model. The plant compensated by the MEC is used instead of
the plant itself. If the compensated plant is similar to the model
in its input-output relations, it can be expected to achieve a de-
sired output by applying the designed controller for the model.
The MECs have shown effectiveness when used for electric
wheelchair control[2], vibration control[3], non-linear[4] and
multiple-input/multiple-output(MIMO) systems[5].

In previous research[1], the MEC has minimized the model-
ing error when a high gain compensator is designed. Therefore,
it is difficult to apply the MECs to the non-minimum-phase
plants having time delays or unstable zeros as this would re-
quire designing a high gain compensator, which is challenging
for such systems.

This paper proposes an MEC with a parallel feed-forward
filter(PFF). In the simple adaptive control(SAC), the PFF is a
filter that compensates a plant characteristics to allow for easy
design of the controller[6]–[11]. In this paper, a PFF is used to
overcome the non-minimum-phase characteristics of the plant.
If the PFF that overcome such characteristics is designed, the
MEC compensator regards the extended plant comprising the
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plant and the PFF as a minimum-phase plant. As a result,
designing a compensator with high model error suppression
performance is desirable. The effectiveness of the proposed
method is illustrated through numerical examples.

2. Model error compensator

2.1 Basic idea

The basic idea of the standard MEC[1] is presented in this
section.

In the model-based control systems design, control systems
are designed through the following steps. First, a nominal
model is derived from the output of a plant and physical laws.
Next, a controller for the derived modelPm is designed as
shown in the upper part of Fig. 1. The outputym in Fig. 1
is the ideal output. Finally, the designed controller is applied to
the plantP as shown in the lower part of Fig. 1.

When there is no difference between the nominal model and
the plant, the ideal outputym is obtained as the actual outputy
by using the controller designed by existing studies. However,
if the dynamics of the model and the plant are not similar, the
actual outputy is not similar to the ideal outputym. Therefore,
it is necessary to suppress the model error between the nominal
model and the plant.

To minimize the model error, we have considered a compen-
sated system, as shown in Fig. 2. The compensatorH(s) sup-
presses the model error between the nominal modelPm(s) and
the compensated systemPc(s). A control system structured by
using the compensated systemPc(s) instead ofP(s) is shown
in Fig. 3. If the model error betweenPm(s) andPc(s) is min-
imized by the compensatorH(s), then the output of the com-
pensated systemPc(s) is similar to that of the nominal model
Pm(s). Therefore, the ideal output is obtained when there exists
the model error between the nominal model and the plant.

2.2 Structure of MEC

In this section, the structure of the MEC is explained.
The standard structure of the MEC[1] is shown in Fig.4．In
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Fig. 1 Standard design sequence of model-based control

Fig. 2 Compensated system

Fig. 3 Control system using system shown in Fig.2

this figure,P(s) is the plant,D(s) is the differential compensator
andPm(s) is the nominal model of the plantP(s).

The difference betweeny andyn is used as the feedback sig-
nal and the compensatorD(s) reduces its model error. The
transfer function fromuc to y can be represented as follows:

Pc(s) = P(s)
1+ Pm(s)D(s)
1+ P(s)D(s)

. (1)

When the plantP(s) is equal to the nominal modelPm(s), the
transfer function becomesPm(s) for anyD(s). This fact can be
confirmed from Eq. (1).

On the other hand, if there exists a model error∆P(s) between
P(s) andPm(s), the MEC suppresses the effect for outputs by
the error. WhenP(s) is represented asPm(s)+∆P(s), the differ-
ence between the compensated systemPc(s) andPm(s) can be
written as follows.

Pc(s) − Pm(s) =
1

1+ P(s)D(s)
∆P(s) (2)

Following Eq. (2), the MEC minimizes the modeling error
when a high gain compensatorD(s) is designed[1]. The de-
sign method of compensatorD(s) which is shown in Fig.4 was
presented in [1].

The MEC has similar concept of the disturbance observer.
In case of the disturbance observer, an inverse model of the
plant is required to compensate the effect of the disturbance and
the model error. It is difficult to apply disturbance observer to
such as non-linear systems, MIMO systems and non-minimum-
phase systems. On the other hand, the MEC does not need the
inverse model of the plant in the compensator. Therefore, de-
sign degree of freedom is larger in the MEC. The MEC showed
effectiveness for electric wheelchair control[2], vibration con-
trol[3], non-linear systems[4] and MIMO systems[5].

However, it is difficult to apply the MEC to the non-
minimum-phase plants with time delays or unstable zeros, be-

Fig. 4 Block diagram of standard MEC

cause the high gain compensator has difficulty stabilizing the
non-minimum-phase systems. Therefore, applying the MEC to
the non-minimum-phase plants in [1] is left to future works. In
this paper, a new structure for minimizing the model error for
the non-minimum-phase plants is proposed.

3. Main result

3.1 Non-minimum-phase plants and model

Plants with non-minimum-phase characteristics are de-
scribed by the following equation.

P(s) = P0(s)e−Ls
N∏

t=1

s− zi

s+ zi
+ ∆P(s) (3)

P0(s) is a transfer function of a stable minimum-phase system,
zi represents unstable zeros,zi is the complex conjugate ofzi ,
andL expresses the time delay. Plants with no time delay can
be expressed byL = 0. If plants have no unstable zeros, then
N is set to zero to express the plant characteristics.∆P(s) is an
additional model error. Moreover, the nominal model is given
as follows.

Pm(s) = P0(s)e−Ls
N∏

t=1

s− zi

s+ zi
(4)

3.2 MEC with PFF

In this section, the proposed structure of an MEC using a PFF
is explained. Fig.5 shows the proposed structure of the MEC.
D(s) is a compensator andF(s) is a PFF. In Fig.4, the feedback
signals to the compensatorD(s) are generated from the differ-
ence betweeny and ym. Meanwhile, in Fig.5, the difference
betweenyf andym f is used as the feedback signal. The transfer
function fromuc to y(s) is described by the following equation.

Pc(s) = P(s)
1+ (Pm(s) + F(s))D(s)
1+ (P(s) + F(s))D(s)

(5)

In case the plant is equivalent to the nominal model (Pm(s) =
P(s)), the transfer function becomesP(s) for anyD(s) from Eq.
(5). Moreover, ifPm(s) + F(s) becomes a stable minimum-
phase system, the design problem ofD(s) can be handled in
the same framework as in previous research[1]. Therefore, it
is necessary to design a compensatorD(s) that has high model
error suppression performance.

Here, the design conditions ofF(s) andD(s) are as follows:

C1: The difference betweenPc f (s) andPm(s) is suppressed.

C2: Pc f (s) is stable for any givenP(s).
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Fig. 5 Block diagram of proposed MEC with PFF

C1 and C2 are the same conditions as in previous research
[1]. The main purpose is to satisfy C1. C2 concerns with the
stability of the entire compensator.

First, C1 is considered. When the plantP(s) involves a model
error ∆P(s) (P(s) = Pm(s) + ∆P(s)), the difference between
Pc f (s) andPm(s) is written as

Pc f (s) − Pm = γ(s)∆P(s) (6)

whereγ(s) is described as

γ(s) =
1+ F(s)D(s)

1+ (P(s) + F(s))D(s)
. (7)

From Eq. (6), the model error is suppressed by minimizing
γ(s)．Thus, the following evaluation functionJ is introduced:

J = sup
∆P

||Weγ||∞ (8)

whereWe(s) is a weighting function. If the evaluation function
J is minimized, the model error can be suppressed.

Next, C2 is considered in order to satisfy robust stability. If
the stability condition of the loop transfer functionD(s)(P(s) +
F(s)) is satisfied, thenPc f (s) is stable for anyP(s).

3.3 Design of filters in proposed systems

In this section, first, the design method of the PFFF(s) for
overcoming the non-minimum-phase characteristics is shown.
Next, the design method of compensatorD(s) is explained us-
ing the designedF(s).
3.3.1 Design ofF(s)

The design method of the PFFF(s) is considered when the
plant defined in Eq. (3) is (i)n , 0, L = 0, (ii)n = 0, L , 0 and
(iii) n , 0, L , 0 respectively.

First, case (i)n , 0, L = 0 is considered. WhenF(s) is
added to the nominal modelPm(s), the systemPm(s) with F(s)
must become the transfer function of the minimum-phase char-
acteristics. Here, ifD(s) is set to high gain, then minimizing
We(s)F(s)/(Pm(s)+F(s)) is effective for the minimization prob-
lem of J. Consequently,F(s) is designed using the following
evaluation function:

J =
∣∣∣∣∣∣∣∣∣∣We(s)

F(s)
Pm(s) + F(s)

∣∣∣∣∣∣∣∣∣∣
∞

(9)

Design method of the PFF can be regarded as a minimization
problem ofJ under the minimum-phase condition. This is one
of the contributions of our paper. The evaluation function is
minimized by using an optimization technique such as the par-
ticle swarm optimization(PSO)[12].

Next, case (ii)n = 0, L , 0 is considered. When the
plant has a time-delay,F(s) is taken to be the Smith predic-
tor[9],[10],[13]. Thus,F(s) is represented as

F(s) = P0(s)(1− e−Ls). (10)

Finally, case (iii) wheren , 0, L , 0 is considered.F(s) is
created by combining the results (i) and (ii). First, the following
F1(s) is defined to overcome the time-delay component:

F1(s) = P0(s)
n∏

i=1

s− zi

s+ z̄i
(1− e−Ls) (11)

Furthermore, to overcome undershoot,F2(s) is designed us-
ing Eq. (9) for virtual modelP∗m(s) = Pm(s) + F1(s) =
P0(s)

∏n
i=1(s− zi)/(s+ z̄i). Then,F(s) can be created by us-

ing sum ofF1(s) andF2(s) as follows:

F(s) = F1(s) + F2(s) (12)

Thus, the PFFF(s) that overcomes the non-minimum-phase
characteristics can be designed even when the plant has the
characteristicsn , 0, L , 0.
3.3.2 Design ofD(s)

In this section, the design method for the compensatorD(s)
based on [1] is shown. From the results of the previous section,
each design condition C1 and C2 can be handled as anH∞ con-
trol problem. Therefore, it is possible to consider the following
design problem regardingD(s) in Fig. 5.
[Problem1] Find aD(s) that minimizes the following evalua-
tion functionΓ1:

Γ1 = sup
∆P(s)

∣∣∣∣∣∣∣∣∣∣We(s)
1

1+ (P(s) + F(s))D(s)

∣∣∣∣∣∣∣∣∣∣
∞

(13)

whereWe(s) is a weighting function. The constraint condition
is as follows:

• D(s) is a robust stabilization controller for the feedback
system with loop transfer function (P(s) + F(s))D(s).

In Probrem1, the model error between the transfer function
from uc to yf andPm(s) + F(s) is evaluated. Here, each condi-
tion in Probrem1 is given as theH∞ norm. WhenPm(s)+F(s)
is considered as the nominal model, it is a minimum-phase sys-
tem owing to the designedF(s) in 3.3.1. Furthermore, the de-
sign problem is equivalent to that in [1], because the model er-
ror∆P(s) is given an additive error.Problem1 is the standardµ
synthesis problem and can be solved numerically by MATLAB
µ synthesis tool box.

Therefore, it is possible to obtain the numerical solution of
D(s) by using the numerical calculation software such as MAT-
LAB to solve theH∞ control problem. Moreover, it is expected
that a smallerΓ1 will be obtained becausePm(s) + F(s) is the
minimum-phase plant. This leads to suppression of the model
error.

In previous research[1], when a nominal modelPm(s) has a
time delay, the structure of the MEC in Fig. 4 could not design
a compensatorD(s) based on anH∞ control problem. In con-
trast, using the proposed structure, a compensatorD(s) can be
designed in the case of the nominal modelPm(s) with the time
delay, because the dead time is ignored by the PFFF(s).
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3.4 Elimination of constant disturbances and steady-state
errors

In this section, an elimination method of a constant distur-
bance and a steady state error is discussed through limiting the
structures ofD(s) and F(s). When F(s) = 0, the proposed
structure in Fig. 5 is equivalent to the traditional one in Fig.
4: the mentioned problems are eliminated by theD(s) with the
integrator shown in [1].

Here, it is assumed that the structuresD(s) andF(s) are given
as follows.

D(s) =
1
s

D0(s), F(s) = sF0(s) (14)

where,D(s) andF(s) have a pole ats= 0 and zero ats= 0, re-
spectively. For example,F(s) in Eq. (10) satisfies the condition
shown in Eq. (14).

First, we consider the elimination of steady-state errors when
a step input ˆu(s) = 1/s is applied. An error signal is derived as
follows:

ê(s) = γ(s)∆P(s)û(s) (15)

ê(s) becomes zero at a steady state regardless of∆P(s), provided
thatγ(s) has zero ats= 0. By substituting Eq. (14) in Eq. (13),
we obtain the following equation:

γ(s) =
s(1+ F0(s)D0(s))

s+ (P(s) + sF0(s))D0(s)
. (16)

From Eq. (16),γ(s) has zero ats = 0 as long asP(s) does not
have zero ats = 0. Thus, it is confirmed that the steady-state
error ofê(s) becomes zero．

Next, the case where a step disturbanced is applied to the
inputu in Fig.5 is considered. The transfer functionTyd from d
to y is represented as

Tyd =
sP(s)(1+ F0(s)D0(s))

s+ (P(s) + sF0(s))D0(s)
. (17)

From Eq. (17), if 1+ F0(0)D0(0) is not equal to zero,Tyd has
zero ats = 0. Therefore, it can be seen that the influence of a
step disturbanced is removed.

From the above results, whenD(s) and F(s) have an inte-
grator and zero ats = 0 respectively, steady-state error can be
eliminated. Furthermore, ifF(s) is designed based on a Smith
predictor in Eq. (10), then it is possible to remove a steady-state
error automatically because the designedF(s) necessarily has
zero ats= 0.

4. Numerical examples
To show the effectiveness of the proposed method, a non-

minimum-phase plant is considered. The transfer function of
the plant is described as follows.

P(s) =

(
−(s− 3)

(s+ 1)(s+ 2)
+

0.1
(s+ 1)

∆(s)

)
e−0.5s (18)

||∆||∞ < 1

∆P(s) in the simulation are shown in Fig.6.
The nominal model is

Pm(s) =
−(s− 3)

(s+ 1)(s+ 2)
e−0.5s. (19)

First, the PFFF(s) is designed. From Eq. (11) and Eq. (19),
the filterF1(s) is designed as follows.

F1(s) =
−(s− 3)

(s+ 1)(s+ 2)
(1− e−0.5s) (20)

The filter F2(s) is designed by minimizing Eq. (9). PSO al-
gorithm is used to minimize Eq. (9) under the condition that
Pm + F is a stable minimum-phase system. Detailed design se-
quence is presented in Section A. As a result of PSO algorithm,
the following filterF2(s) is obtained.

F2(s) =
11.4s2 + 0.518s

11.4s3 + 34.9s2 + 24.2s+ 1
(21)

Here, to confirm the effectiveness ofF(s), the step responses
of Pm(s), F(s) and Pm(s) + F(s) are shown in Fig.7. In this
figure, dashed, dotted, and solid lines show the step responses
of Pm(s), F(s) andPm(s)+F(s) respectively.F(s) compensates
any undershoot and time delay ofPm(s). Therefore, the input-
output relation ofPm(s)+F(s) is regarded as a minimum-phase
system.

Fig.8 shows the Bode diagrams ofPm andPm(s)+F(s). Gain
diagram ofF(s) is also shown in Fig.8. We can find that phase
delay ofPm(s) + F(s) is smaller than that ofPm(s), obviously.

Next, the compensatorD(s) is designed based on the design
method of [1]. When this method is used, it is necessary to set
the weighting functionWe(s). To suppress the model error, es-
pecially in the steady state, the functionWe(s) is set as follows:

We(s) =
100

(10s+ 1)2
(22)

As a result, the following compensatorD(s) is obtained.
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D(s) =
Dnum(s)
Dden(s)

(23)

Dnum(s) = 1.41× 104s7 + 1.22× 105s6 + 4.35× 105s5

+8.12× 105s4 + 8.40× 105s3 + 4.63× 105s2

+1.11× 105s+ 4.08× 103

Dden(s) = s8 + 1.98× 102s7 + 1.07× 104s6

+4.31× 104s5 + 5.94× 104s4 + 3.18× 104s3

+5.36× 103s2 + 3.30× 102s+ 6.65

From Fig. 9, the high gain compensatorD(s) can be designed
in the low-frequency domain, which is influenced substantially
by the model error . The above design results have been verified
by the simulations. The effectiveness of the proposed method
is confirmed here by inputting step and sine waves.
[Case A] Performance for a step input

First, step responses ofP(s) without a controller are shown in
Fig.10. Solid black and dashed red lines denote the responses
of P(s) andPm(s), respectively. It can be seen that the responses
of P(s) are changed by the influence of the model error.

Next, step responses of the compensated systemPc(s) using
the proposed control system are shown in Fig. 11. Solid black
and dashed red lines denote the responses ofPc(s) andPm(s),
respectively. In comparison with Fig.10, it is clear that the in-
fluence of the model error can be suppressed, especially in the
steady state.

Here, to verify whether the designed compensatorD(s) sup-
presses the model error between the transfer functionPc f (s)
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from uc to yf and Pm(s) + F(s) in Fig.5 , step responses of
Pc f (s) are shown in Fig.12. Solid black and dashed red lines
represent the outputs ofPc f (s) andPm(s) + F(s), respectively.
From Fig. 12, the designed compensatorD(s) suppresses the
model error betweenPc f (s) andPm(s) + F(s). This shows that
the designed compensatorD(s) satisfies the design conditions
in Problem1.

From this result, we can confirm the effectiveness of the pro-
posed control system.
[Case B] Performance for a sine wave

Output responses, that a sine wave (sinπt/7) is used as input
for P(s), are shown in Fig.10. Solid black and dashed red lines
show the responses ofP(s) and Pm(s), respectively. The re-
sponsesy are different from the output of the nominal modelyn

because of the model error. The responses of the compensated
systemPc(s) are shown in Fig. 14. Solid black and dashed red
lines are responses ofPc(s) andPm(s), respectively. Comparing
Fig. 14 with Fig. 13, confirms that variation from the output of
the nominal modelyn is suppressed.

In the same manner as inCase A, in order to confirm that the
designed compensatorD(s) satisfies the design conditions in
Problem1, step responses ofPc f (s) are shown in Fig.15. Solid
black and dashed red lines show outputs ofPc f (s) andPm(s) +
F(s), respectively. Fig.15 shows that the designed compensator
D(s) suppresses the model error betweenPc f (s) and Pm(s) +
F(s).

Therefore, the proposed control system is effective for a va-
riety of the input signals.

5. Design of proposed compensator for MIMO plants

The proposed system is applied to MIMO systems in this sec-
tion. The block diagram of the compensated systemPCF(s) is
shown in Fig. 16, for the case where the plant hasn inputs and
n outputs.

The PFFF(s) can be designed using the design method
shown in section 3.3.1. The designedF(s) must satisfy the
condition that each of the input and output characteristics of
PM(s) + F(s) becomes a minimum-phase characteristics.

The design method ofD(s) is considered. InProbrem1, the
designedD(s) suppresses the model error between the trans-
fer function fromuc to yf and PM(s) + F(s) in Fig.5. Here,
in Fig.16, the difference between the transfer functionPCF(s)
from uc to yf and PM(s) + F(s) is given as follows, with the
subscriptsomitted:

PCF − (PM + F)

= (I + (P+ F)D)−1(P+ F + PD(PM + F) + FD(PM + F))

−(PM + F)

= (I + (P+ F)D)−1∆P

= ϵ′∆P (24)

whereI is ann × n unit matrix. ϵ′(s) in Eq. (24) is the matrix
representation of an element in Eq. (25). As a result, aD(s)
for MIMO systems can be designed because the design method
of the MEC for MIMO systems has been shown in [5]. There-
fore, the following design problem regardingD(s) for MIMO
systems in Fig.16 can be considered.
【Problem2】Find aD(s) that minimizes the following evalua-
tion functionΓ2:
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Γ2 = sup
∆P(s)

∣∣∣∣∣∣We(s)(I + (P(s) + F(s))D(s))−1
∣∣∣∣∣∣∞ (25)

whereWe(s) is a weighting function. The constraint condition
is given as follows:

• D(s) is the robust stabilization controller for the feedback
system with loop transfer function (P(s) + F(s))D(s).

As explained above, the PFFF(s) and the compensatorD(s)
can be designed even when the plant is a MIMO system.

6. Conclusion
This paper proposed an MEC with a PFF. A design method

that uses the PFF to overcome a non-minimum-phase charac-
teristics was shown. Moreover, a design method for the com-
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Fig. 16 MEC with PFF for MIMO system

pensator using the PFF was described. Simulations confirmed
that the compensator with high model error suppression perfor-
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mance can be designed. The effectiveness of the MEC with the
PFF was illustrated through numerical simulations.

This work was supported by jsps kakenhi Grant-in-Aid for
Scientific Research (C) 16K06419.
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Appendix A PSO algorithm
In this section, a concrete design procedure to designF2(s),

which minimize Eq. (9), is presented. The filterF2(s) is de-
signed using PSO algorithm. Form ofF2(s) is given as follow:

F2(s) =
a1s2 + a2s

a3s3 + a4s2 + a5s+ 1
. (A. 1)

The parameter position is denoted asp = [a1,a2,a3,a4,a5]T .
The parameter velocity is denoted as∆p =

[∆a1,∆a2,∆a3,∆a4,∆a5]T .
The optimal parameter vectorp is required to obtain from an

optimization algorithm. Patricle swarm optimization (PSO) is
a computation method for optimizing a problem by iteratively
trying to improve a solution. Multiple particlesp1, · · · , pm are
used in the PSO algorithm wheremdenotes the number of par-
ticles.m= 100 is used in this paper.

To minimizeJ in Eq. (9), the following objective function
E(p) is determined.

E(p) =

{
J(p) Minimum phase condition satisfied
Epen otherwise

Penalty term is used if stable minimum-phase condition is not
satisfied. The penaltyEpen is the larger positive value com-
pared to a value ofJ(p) which is an acceptable solution.E(p)
becomes large value if the minimum phase condition ofPm+F
is not satisfied.

The position and the velocity ofi-th particle are denoted as
pi and∆pi , respectively.pi is updated based on the following
update laws.
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pt+1
i = pt

i + ∆pt+1
i (A. 2)

∆pt+1
i = ω0∆pt

i + ω1randt
1,i(p

t
pbest,i − pt

i ) (A. 3)

+ω2randt
2,i(p

t
gbest− pt

i )

t denote the iteration number and its initial value ist = 0. The
maximum iteration numbertmax is given as 200 in this paper.
ω0, ω1 andω2 are the weighting coefficients which are given
as positive values. The random numbers randt

1,i and randt2,i are
selected in the range [0,1]. In (A. 3), pt

pbest,i means the personal
best solution which is determined as follow:

pt
pbest,i := arg min

x∈{p j
i | j=1,2...,t}

E(p). (A. 4)

pt
gbest means the global best solution which is determined as

follow:

pt
gbest := arg min

x∈{pt
pbest,i |i=1,2...,n}

E(p). (A. 5)

Then, PSO algorithm is given as following steps:

PSO algorithm

• Step 1: Set t = 0. For i = 1, · · · ,m, initial position p0
i

and velocity∆p0
i are selected randomly and evaluate the

corresponding objective functionE at each position.

• Step 2: Updatept
pbest,i and pt

gbest by (A. 4) and (A. 5), re-
spectively. Then, apply update laws (A. 2) and (A. 3) for
all particles, and go to Step 3.

• Step 3: Evaluate all positionpt
i by (A. 2). Sett = t+1 and

go to Step 2 ift < tmax. Else, updateptmax

pbest,i andptmax

gbest.

By using PSO algorithm, Eq. (21) is obtained.


