Dynamic Quantizer Design under Communication Rate This study aims to design a quantizer that satisfies communication
Constraints rate constraints. First, assuming that the filter parameters are given
and an analysis method is proposed for the design of an optimal
Hiroshi Okajima , Kenji Sawada and Nobutomo Matsunaga duantization interval that satisfies communication rate constraints in
Section lll. The design of the quantization interval is reduced to
the ¢; optimization problem. Then, the control performance can be
Abstract—Feedback type dynamic quantizers such as delta-sigma analyzed explicitly for a given filter parameters.

modulators are typically effective for encoding high-resolution data into : : : .
lower resolution data. The dynamic quantizers include a filter and a static In Section 1V, a design method is formulated as a numerical

quantizer. When it is required to control under a communication rate  OPtimization problem for filter and quantization interval design using
constraint, the data rate of the quantizer output should be minimized a particle swarm optimization (PSO) algorithm with the evaluation

appropriately by quantization. This technical note provides numerical function of Section Ill. Initial quantizers and its velocity terms in the
methods for the complete design of a type of dynamic quantizers, pgq gigorithm are designed using the design method in [16], which is
including the selection of all the quantizer parameters in order to . . . . . !
minimize a specific performance index and satisfy a communication composed of an invariant set analysis and an iteration algorithm. The
constraint. The design method of the dynamic quantizer is proposed effectiveness of the method is assessed through numerical examples
using a particle swarm optimization (PSO) method. A part of the initial  in Section V.
quantizers in PSO are designed based on an invariant set analysis and  Note that this technical note is based on our preliminary version
an iteration algorithm. Effectiveness _of the system with the proposed [23], published in the conference proceedings. This technical note
quantizer is assessed through numerical examples. ' . - . ; : o .
uses an iterative algorithm to give the appropriate initial quantizers

in the PSO algorithm, contains full explanations and adds numerical
simulation.

In the remainder of the manuscript, a setrok m real matrices
is denoted asR™*™. R, is the set of positive real numbers
and I is the identity matrix. For a matrixd, H” and p(H)

The analysis and synthesis of the networked control system@rrespond its transpose and spectral radius, respectively. For a
(NCS) have recently attracted significant attention [1]-[3]. BecausectorX = {1, 2, -+ ,z, - }, | X|| represents the infinity norm.
the data rate is limited in communication channels, overcomir@onsequently||X || = sup, ||zx|| holds.
performance degradation is a crucial topic in NCS. To use the
communication channel, the control signals should be compressed
using quantizer because of the limited communication rate [4]-[8]. ) o
There exist performance degradations caused by the quantizaffonCONtrol systems with a communication channel
because plants are controlled by compressed (quantized) signal#\ single input single output (SISO) discrete-time pléhis defined
Therefore, the type of quantization used to achieve good performarge
in NCS needs to be considered carefully. Feedback type dynamic Pp. {xp(k+ 1) = Apzp(k) + Bpup(k),
quantizers have proven effectiveness for overcoming performance (k) = Cpwyp(k),
degradation [9]-[15]. Consisting of a filter and a static quantizer,
they utilize previous quantization error information to generate quafherez, € R"»*! is the stateu, € R is the controll inputy, €
tizer output. Such quantization methods are widely used in sigrYS(ll'S the control output4, € R"**"7, B, € R"™*" andC), €
processing [9], [10] such as in AD/DA converters, data compressBr * are constant matrices, ang (0) is the initial state. Planf
for music audio signals, and switched-mode power supplies. ifi@ssumed stable.
recent years, feedback type dynamic quantization methods hav&id- 1 shows the structure of a control system equipped with a
been exploited to a large extent in control engineering [11]-[15§oMmmunication channel, in whick is an outer signal ang is
Performance degradation decreases if an appropriate filter is chod¥h Plant output of (1), respectively. Signalmay be regarded as
in the dynamic quantizer. A dynamic quantizer designed based @ Operating signal or command, such as a telesurgery operation.
(. optimization has been proposed for stable minimum-phase plafif2€ quantize transforms the high-resolution outer signainto a
[11]. This quantizer was expressed analytically as a function of pldfver resolution signab and ENC encodes this rounded signal. The
parameters. Its static quantizer component was assumed to be gf@gPeded signal passes through the communication channel before
and the quantization interval was fixed. Moreover, feedback contigfdergoing decoding in DEC. No delay or loss in precision is
[12], the non minimum-phase plants [13] and non-linear systems [1&§sumed to occur. Therefore, = v is the control input forP
have minimized performance degradation by quantization with hid this system.
efficiency. The number of quantization levelS depends on the communi-

When we want to use the dynamic quantizers under communicatfffion rate of the channel. Wheil [bits] of data are transmitted
rate constraint, the output level number in dynamic quantizers shodfijough the channel over a sampling periad, should satisfy the
be explicit. However, this number has not been analyzed explicifig!lowing inequality. My
in the past. If the channel data rate is givenidshits per sampling, N<2 )
this number must be smaller than or equakd. The quantization Although, N is assumed to be even in this study, the same discussion
interval in the static quantizer component is closely linked to this
number. Therefore, filter and static quantizer components both need

Index Terms—Quantizer Design, Communication Rate Constraint,
Networked Control Systems.
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also applies to oddV values. In particular, odd number is more I1l. QUANTIZER ANALYSIS

suitable for the case thatshould become zero whenequals zero. A Minimum quantization interval for given dynamic quantizers
The outer signak: is constrained by upper and lower boundaries,

giving the signal rangé&/ = [umin, umax|. Hence, the outer signal

is assumed to satisfy the following relation.

In this section, assuming th&A, B, C} are known, an analytical

method is developed for communication rate constraints along with

a derivation of the minimum quantization interval.

u(k) € U, Vk 3) The relationship between the number of quantization levels and
the quantization interval is evaluated first. The quantization error of

B. Dynamic quantizer form Qst(u) Is written as

€ = st —Uu. 6
The feedback-type dynamic quantiz@ris defined as: Qot(v) —u ©)
Then the following inequality holds fot(k) which satisfiesu(k) €
9 {E(k +1) = Ag(k) — Bu(k) + Bu(k), @ lo—Nd/2.c+Ndj2).
v(k) = Qu[CE(K) +u(k)], (k)| < g 7

where Q,; is the mid-riser type uniform static quantizer with sat-

. e o On the other hand, when(k) is out of range (Fig. 2, gray area),
uration for an even permissible number of quantization levéls : .
Fig. 2 shows an example @@ (Solid line, N' = 4). A € R™#*"a le(k)| > d/2 holds by the saturation of the quantizer. Therefore,

B e R™*! andC € R are constant matrices. The initial state_ and d need tuning to satisfy (7) for alk(k) € U. For dynamic

is given ast(0) = 0. The quantizer output(k) is obtained by static quantizers, the input signal fdps. is written asu = u+C¢ to avoid
o ' . . . N confusion. The inequality for the range constraint on a the given
quantization ofC¢ + u. Q. is defined using a quantization interval L . . )
d € R, and a center point € R. Its level interval is the same for communication rate in the network channel is defined as
+ .
input and output axes (Fig. 2). Nd > tmax — Umin, (8)

and the range ofi(k) is expressed a&. Because the signal(k)
C. Design problem of dynamic quantizer based on error system always takes any value &, U can be characterized usirig and a
Fig. 3 shows a quantizer performance evaluation system basedrange of¢ = C¢. The rangelU, is denoted ad/y = [Amin, Pmax]-

an error signal. The desired output(k) is an output ofP usingu(k)  The relationship betweeti and the range of is summarized as
as the_ input signal. Signazl(k:)_, Whic_h is quantized bQ, i_s applied U = [tmin + Grains Umax -+ Gmax]- 9)
to P in the control system involving the communication channel,
resulting in outputy(k), which differs fromy,.(k). The error signal Therefore,U,, depends on the given filter paramet¢rd, B, C}.
e(k) = y(k) — y-(k) needs to be minimized using the appropriate If we can find the range af, d can be decided usinyd > timax—
parameter sef A, B,C,d} so thaty approximatey,. The quantizer #min. We denote a sgp2r , ¢ohr,] which minimizesgmax — Gmin-

is designed based on the following performance inf¢%)) defined Then, it is equivalent to find the sép”, o5 ] and to findd***
as using
E(Q) = Ssup Hy - y’“Hv (5) Ndopt = Umax — Umin- (10)
u(k)eU

Therefore, a solution leading @77 , $%L ] is proposed.

wherey = {y(1),y(2),---} and Y = {yr(1),y(2), -} are the e gefine a signalo(k) as follow.

output time series. Becaude(Q) produces the maximum value for

e(k), y expected to be similar tg, if £(Q) is small. In existing w(k) = E(Qst[cg(k) + u(k)] — CE(k) — u(k)) (11)
dynamic quantizer designs [11]-[14%(Q) is used as a performance d
index for these quantizers. The definition ofQs, indicates thatjw|| < 1. Using (11), the state

equation of¢ is written as follows:

Qulu]

. E(k+1) (A+ BC)¢(k) + ng(k), 12)
Existing researches

¢(k) = C&(k), [Jw]] < 1. (13)
IR

Moreover, using the coordinate transformatipr: (d/2)¢, the state

'\ \ equation becomes
(c,c) This paper - -
d \d Ek+1) = (A4 BC)¢(k)+ Bw(k), (14)
e w(k) = C&k), [lw|| <1, (15)

where) := 2¢/d. Note that (14) and (15) are independentidofTo

Fig. 2. Comparison of a mid-riser type uniform quanti£gs; (Solid line)  fing Ug = [min, Ymax] IS equivalent to findJ,. For convenience,
with existing researches (Dashed line -

u. e Y Pmax i denoted agy. Then, we obtainjmin = —1 because of the
2[bit1{'__ -1 solution symmetry. The problem to firi% is written as follow:
-|-L“'J1|J’ P Problem 1: Considering (14), (15) ang(0) = 0, find + value that

Q Constraint satisfies the inequality condition
y e — < CE(K) <, VE(K) €E, (16)
r ~
P B whereZ= is the reachable set @ffor w. m
Moreover, by using the optimal solution of minimization problem of
Fig. 3. Error system for quantizer performance evaluation 1 under the condition given iRroblem1, the minimum quantization

interval d°?* is obtained by the following theorem:



Theorem 1:Using optimal solutiory)°?*, the minimum quantiza- V. DESIGN OFDYNAMIC QUANTIZER UNDER COMMUNICATION

tion interval d°?* and c°** are expressed as RATE CONSTRAINT
gopt — Umax ~ Umin  opt _ Umax + Umin 17 In this section, dynamic quantizers are designed using two-step
N —qport 2 ' design method. lterative design method based on an invariant set
If N—°P < 0, nod satisfies the condition regarding the permissibl@naWSiS [22], [16] and the particle swarm optimization method (PSO)
number of auantization levelm [18] are used together to obtain quantizer which minimize (20).

Theorem 1 provides a relationship betwe#* and ¢°?* which The PSO is a kind of the optimization method based on the swarm
is derived from (10).4°P*, which characterizes the signal amp”_behavior. It requires many particles which represent the candidate of

tude caused by dynamic quantization, is obtained using matridb€ guantizer parameters. We denote design parameter positions in the

{A, B, C}. If v°P* is small,d”" is also set small. On the contrary,_PSO asp; = {A;, B;,C;} and parameter velocities, which are used

a large d°"' is chosen when)® is large. In particular, when N the PSO algorithm, ad\p; = {AA;, AB;, AC;}, respectively.
N — ¢t < 0, {A, B, C} should be redesigned to satisfy thel Ne number of particles in the PSO algorithm is determineeras
communication rate constraint. The amplitude P! is regarded I standard PSO design, initial particles and velocities are given
as an index of the usability of the dynamic quantizer for sign‘g‘gndomly. In contrast, the quantizer parameters and its velocities

communication, providing valuable information for the constructiofyould be designed using iterative design method at first step in the
of the networked control system. proposed design method. The obtained quantizers by the iterative

method are used as a part of the initial quantizers in the PSO
algorithm. It is expected that the dynamic quantizers, which achieve

5 0 opt
B. Estimation of smal) good performance, are obtained by the two-step design method.

It is required to solvey°?* to satisfy the communication rate
constraint. Our previous studies focus on the fact that the reachable . . . . . .
set is covered by the invariant set from outside [17] to estimate A A!1 lterative algprlthm of dynamic quantizer design based on
If the invariant set clipped by’ and —C¢ is minimized, the real 'Mvanant set analysis
value of+ is minimized indirectly. The detailed derivation sequence As the first step of the design algorithm, iterative method using an
is shown in Appendix A. In case of Appendix A, we obtain the uppdnvariant set analysis [17] is presented in this sectRmoblems 3and
bound ofy which leads to estimaté’; from outside. The estimated 4 in appendices provide inequality conditions related to performance
value of°P* is conservative in our previous researches. index and communication rate constraint, respectively.

In contrast, the maximum valué corresponds to thé;-norm By combining Problems 3and 4, the design problem using
of the impulse response of the linear time invariant system in (1#equality conditions is addressed as follows.
and (15). The value ofy°?* can be estimated from outside by the Problem 2:Find the followingI'™*.

following sequence. . _ .
At first, a positive integer valud. is selected and calculate the = A,B,c,zp>0,nzl(ligo,a,ﬁ,—y?,q/)2F(f% ¥) (22)
following term abouty°P"". Umax — Umin
L v Ly, ) == ’YW (23)
wopt,L _ Z ‘C(.A + BC)ZB (18) subject to
i=0 [ zs CT Z, C7T
. . . . . 2 2 Oa ~ 2 2 Oa
Secondly, the value)*" is derived by using a controllability pair | C ¢ ¢ v
(A+BC, (A+BC)*+1B) with LMI problem in Appendix A. Then, [ (1—-p8)Za 0 (A+B0) 2z,
the following inequality holds for any giveh. 0 BI BT Z, >0,
q/jopt,L < wopt < d}opt,L + d}*,L (19) L Zd(.A+ BC) ZaB . Za
. . 1-a)Z, 0 ATz,
When a large valud. is selectedyg ™" is close to zero. The value 0 of BTZ, | >0
y°PhE 44p* can be used as an estimated valug/f that satisfies Z,A Z,B  Z, B

the communication rate constraint.

1\2 2
By using the result in [11] and above result, the evaluation value a € [0,1=p(A)7], B €[0,1-p(A+BC)]

(5) can be given by the following remark. I' is minimized using the inequality constraintsfioblems 3and4.
Remark 1:The filter parametersd, B andC are given. The fol- |f a set{A, B, C} are obtained by solvin@roblem2, E(Q) < I'*
lowing equation holds withl, — oco. holds. Therefore, the obtained quantizer is expected to exhibit good
oo _ Jor L control performance under communication rate constraints if we can
EQ) = (Z ‘CAIBD 5 (20) obtain smalll".
i=0 The multiple variables in inequality conditions and the nonlinear
qorbt Umax — Umin (21) evaluation function (23) makeroblem 2difficult to solve numer-
N — (pert-l 4 =l ically. A design algorithm usingProblems 2, 3and 4 has been
Matrices A, B, C are given as follow: developed to obtain appropriate numerical solutions [16].
In Problem 2 what is now needed is to find variablgs, ¥, a, 8}
A [ A, B,C } B { By } c=[¢c 0] and matrix variables{Z,, Za4, A, B, C}. This leads to solve a
0 A+BC |’ B ]’ non-convex problem in the sense that the constraints are bilinear
[ ] matrix inequalities of{ Z,,, Z4, A, B, C} and evaluation functiof

Therefore, in case the filter paramete4s3 andC are known, the is a nonlinear function of~,}. Note the fact thafZ,, Z,} or
quantization interval in Theorem 1 is optimized by solving @n {«, 8, A, B, C} are fixed, the constraints becomes convex. Then, if
optimization problem. This remark is one of the contribution of thi§' can be substituted by another linear functibnProblem 2can be
technical note. solved by an iteration design algorithm which successively minimizes



J over variables while fixing the other variables in terms of the LMéxisting results such as [11] is one method to give an initial quantizer
optimization. Of course, the selection of the substituted function for the iteration design algorithm. Thed, is obtained by solving

is important. Consider the following substituted function form

J=ay’ +b)® +g, (24)

wherea, b andg are coefficientsJ is a linear function of{+?, 1%}

and useful for solving the standard inner point method becal
{+?, ¥*} appear linearly in the constraints. This paper selecbse

coefficient valuesa and b appropriately and then reducesto a

substituted function of. The key idea is introduced by the iteration

design algorithm proposed in [16]. In [16], appropridte b, g} are

provided such that'(~, 1) = J(v,%) holds in the neighborhood of
a certain set of v, ¢}. In this paper, only: andb are given because

g does not affect the optimization problems. Denptet} obtained
from the k-th step of the iteration design algorithm Hyyx, ¥ }.
Consider the linear approximation of(~y, ) and I'(y,+) in the
neighborhood of v, 1« }. The former is given by

J = 2ayk (v — k) + 200k (Y — i) + T (v, Yr),

and the latter is given by

(25)

T Umax — Umin Umax — Umin

= M(’Y = Vk) +7km(¢ — )
+I (e, Yr)-

A comparison between (25) and (26) gives coefficienendb as
follows:

(26)

Umax — Umin Umax — Umin

@7

ued

Problem 3 with these parameters. This design algorithm performs
adequately wheiProblem3 is solvable for the initial quantizer.

When N — vy < 0 that is, Problem 3is unsolvable for the
initial quantizer{.Ao, Bo, Co}, this initial quantizer is modified. For
example,{Ao + (h — 1)/hBoCo, Bo, Co/h} whereh > N/yq is
ynamic quantizer. For appropriate inequality N — vy > 0
causeyy = wo/h. Therefore, the initial quantize{Ao + (h —
1)/hBoCo, Bo, Co/h} is solvable.

In Stepl-1,A4541, Bry1 andCr4:1 are updated and the resulting
J value is smaller than that obtained fdy,, Bk, Cx. Therefore[ is
also expected to be small in this case. When the quantizer parameters
Agk+t1, Brt1,Cry1 are fixed in Stepl-Rroblems and4 are regarded
as LMI optimization problemsy and ) are minimized by solving
Problem 3and4, respectivelyl” does not increase in Stepl-2 because
T" is a monotonically increasing function farand .

In Stepl-3, the performance of the designed quantizers is com-
pared. This assessment is conducted using a parafietexk A <
1. The number of updates increases with decreagingalues.

This design algorithm is an iterative process that is expected
to generate a quantizerA, B, C}, satisfying communication rate
constraints and exhibiting good performance. At least the obtained
quantizer by this iterative algorithm is better than that in [16] because
d°PtT (< d*) is used in the proposed quantizer.

Not only p but alsoAp is obtained by using the proposed iterative
design algorithm.

B. Design of dynamic quantizer using particle swarm optimization
In this section, a concrete design procedure to determine the design

a=-—————, b= 5.
Aye(N = 9r) (N = e)? parameterg, which minimize (20), is presented. As a part of initial
Therefore, for thek-step of the iteration design algorithm, (27)candidate solution, the iterative design algorithm in section IV-A is
providesT (vx, ¥x) = J (&, ¥x ). In other words, by updating and  used.
b of J(v,1) based on (27)J(v, ) is applicable to the substituted At first, we describe the conventional particle swarm optimization
function of I'(y, ). Next, we consider the update steps of thalgorithm which is a kind of the optimization method based on the

iteration design algorithm. In the algorithn{Z,, Z4} are fixed to

swarm behavior [18], [19]. The following minimization problem is

obtain appropriate A, B, C, d} in Problem 2 On the other hand, considered in this section.

{Z,, Z4} can be updated biProblems4 and 3, respectively.

It is expected to obtain small' and good quantizer parameters
by iteration design algorithm. Then, the extended design algorithm

based on [16] is expressed as follows.
Iteration design algorithm

« Stepl-Q Initial quantizer parametersly, By andC, are given
andd is obtained by solvingProblem3. Moreover,Z, 0, Za,0,
Y0 ando are determined througRroblems4 and 3.

. Stepl-l For fixed Zd,k and Zp,k, Ak+1, Bk+1 and Ck+1 are
obtained by solvingProblem 2. The coefficientsa and b of
function J are defined in (27).

o Stepl-2 For fixed Ax+1, Br+1 andCry1, Zp,k+1 and Zg k41
are obtained by solvin@roblems4 and 3, respectivelyy and
1 of the solution are set ag,+1 and 41, respectively.

o Stepl-3 I'y41 and I', are compared. If a ratid's/T'k41

exceedd + A, A > 0, this algorithm is repeated from Step1-1.

min E(p) (28)
subject toy " (p) < N (29)

where,E : R™ — R is the objective function angd = {A,B,C} is

the design variable vecta:°”"* (p) < N denote the communication
rate constraintay°?*%(p) can be calculated by (18). The optimal
solution p°P* for (28), (29) is required to obtain from an optimiza-
tion algorithm. Patricle swarm optimization (PSO) is a computation
method for optimizing a problem by iteratively trying to improve a
solution. Multiple particle®:, - - - , p.,, are used in the PSO algorithm
wherem denotes the number of particles. To solve (28) by the PSO
algorithm, the following objective functioti’s (p) is assumed to be

given.
B, :{ E(p) (""" (p) <N)

Epen + E(p)  (otherwise) (30)

Otherwise, the process ends aAgl; 1, Br+1 andCr41 describe  The penaltyE,., is the larger positive value compared to a value

the obtained dynamic quantizer.
o Stepl-4 Obtain ¢** + ¢°P“% by calculating with
Aps1,Ber1,Cri1. Then, the quantization intervatloP®L,

of E(z) which is an acceptable solution. The position and the
velocity of i-th particle are denoted as; = {A;,B;,C;} and
Ap; = {AA;, AB;, AC;} , respectivelyp; is updated based on the

which satisfy the communication rate constraint, is derivegjlowing update laws.

using ¥* T + ¢°PHL. Parameter velocityAp is given by
Ap = {Ak+1 — Ag, Biy1 — B, Crg1 — Ck}-

The initial quantizer parameters are chosen to satisfy stability
condition of the dynamic quantizer [11]. For example, using the

t+1

pitt P+ Ap! (31)
ApiTt = wolp! +wirand! ;(phpesri — 1Y) (32)

+w2rand§7i (pf;best - pi)



t denote the iteration number and its initial valuetis 0. wo, w1
and w, are the weighting coefficients which are given as positiv
values by the designer. The random numhersd; ; and rands ;
are selected in the rangde, 1]. In (32),p;best‘i means the personal
best solution which is determined by the following statements.

“mvk)
—u(k)

yr k), y k)

t .
Ppbest,i = arg ‘min E¢(p)
rheet we{plj=1,2...,t} ! (33)

ptgbest means the global best solution which is determined by tt

following statements. 0 50 ) 100 150 0 50 . 100 150
Dgvest = arg min Ey(p) (34) @) (b)

@€{Plyear ;|i=1,2...,m}

) ] ) S Fig. 4. (a) Actual {(k)) and desired outputgyf(k)) of the control system
The PSO algorithm for the dynamic quantizer design is given &9 Inputu(k) and output signals(k) of quantizerQ,oposed
following steps:

PSO algorithm TABLE |
L . . COMPARISON FOR DESIGN ALGORITHM IN[16]
o Step2-1 Sett=0. Fori = 1,--- , m., initial quantizer positions 5 5 5
p? and its velocitiesAp? are selected by using iterative design : 1 2 3
. . - ) - E(Q) of proposed method wittv =2 | 0.757 | 0.0378 | 0.309
algorithm in Section IV-A. Fori = m, + 1,--- ,m, initial " -
itionp? and velocityAp! are selected randomly and evaluate E(Qq) Of Ref. [16] with NV = 2 327 | 0.246 | 0.747
ph03| Pi G oh P o At $7E(Q) of proposed method withh =& | 0.316 | 0.0016 | 0.0303
the corresponding objective function at each position. F(Ou) of Ref. [16] With N = 8 0329 T0.0552 T 0.0530

« Step2-2 Updatep},..;; and pl,.., by (33) and (34), respec-
tively. Then, apply update laws (31), (32) for all particles, and
go to Step2-3, COMPARISON FOR OPTIMALTAEIA_ETIIIZER[ll] WITH P AND SOME
« Step2-3 Evaluate all position! by (30). Set: = ¢t+1 and go to Q !

. ¢ + t . QUANTIZATION LEVELS N
Step2-2 ift < tmax. Else, updatey 2%, , andp p2x . p 2%, is < 5 - < ”

B R ax *,L opt,L ;
the designed parameters. For the giygr:z;, ¢™" + 47" is E(Q) of proposed method 0.757 | 0.1088 | 0.0316 | 0.0130
E(Quq) of Ref. [11] — [ 0.1116 | 0.0316 | 0.0130

calculated and the quantization interiP* L is derived using
’l/)*’L +wopt,L.

m, IS a positive integer to give good initial quantizers for the PSO

algorithm. In particularpgbest is better initial quantizer ifn, > 1. ) . .

The PSO algorithm is simple and it makes no assumption about theSlmulatlon results fo with

quantizer design problem. It might be obtained a good solution for u(k) = 0.3 cos(0.06k) 4 0.7sin(0.13k) € [—1, 1] (35)

the evaluation functior(p) because we use the quantizers, which o ] ) ) )

is designed by the iterative algorithm, as the initial particles. are shown in Fig 4.In Fig. 4 (@),y-(K) is the desired output (thin
line) andy(k) is the actual output usin@ (thick line). Both outputs
are similar, suggesting th& displays good performance. Fig. 4 (b)

V. NUMERICAL EXAMPLES shows the quantizer inpui(k) and outputv(k) using Q for two

The effectiveness of the proposed method is evaluated throucbxﬁantlzatlon IeveIsQ_satlsfles the communication r_ate constralnts_.
To show the effectiveness of the proposed algorithm, the quantizer

numerical examples. The range ofis assumed to b& = [-1,1]. : ) . . .
Plant parameters are defined as Qit b)_/ iteration algc_mthm [16] is used as a target for comparison. The
quantizers are designed for eadhand P; and the obtained?(Q)
A B 1.7326  —-0.7408 | 0.5 values are presented in Table. |. We can find tB4€)) is smaller
P = (TP‘TP) = 1 0 0 . than E(Q:) for all setsP; and N. In particular, the difference is
P 0.3533 —0.0083 | 0 larger if N takes smaller value.

P, is derived by usingP: (s) = (s+20)/(s?+3s+2) with sampling Then, the optimal quantizeQo, = {Aoq, Bog; Coq} I [11] acts

time A¢ — 0.1. Discrete systemg and P; are derived by using @S @ target for comparisors, which is stable minimum-phase

Py(s) = 1/(s* + 3s + 2) and Ps(s) = (s — 5)/(s* + 35 + 2), system, IS selected as the plant to des@ml._ For obtalneon?,

respectively. the resuIFlpngq value amouqts t.(2.4176, which does not satisfy .
For the proposed quantizer design algorithm, the parameters g condition for the communication rate (Theorem 1). Therefore, if

selected agr, = 1, m = 1000, tmax = 300, Epen = 10°, wo = 0.9, a quantization mte_rval is set Q¢ some signals:(k) cannot meet

wi —ws — 1 andL = 100. Fori = 2,--- , 1000, initial positions the range constraints in this qua_ntlzer. In Table.Ql, andQ_ are

p? and velocitiesAp! are selected randomly so that their entries |i§0mpared by the valu&(Q) for different numbers of quantization

in the range[—1,1]. In case withP, and N = 2, the following evels (N = 2,4,8,16). For N = 2, Qo, does not satisfy the

quantizer parameters are obtained by the proposed algorithm. communication rate constraints. Whé&h becomes larger, the value
E(Q) close toE(Q.q). For largeN (= 8,16) almost same quantizer

parameters fo),, are obtained by the proposed design algorithm.
Al B 0 1 0 In this study, a method is developed for the design of SISO
QR = (T‘i) = 0.728 0.160 L dynamic quantizers. This method may easily be extended to MIMO
systems by combining the result in [16] and this paper.

—0.728 —0.937 | 1.882

Opt — H H T H
" = 0.937 is obtained for the filter paramete{st, 5, C}, which 1To confirm whether the signal range constraint is satisfied, weQusé]

satisfy the conditionVV — ¢°?* > 0. Moreover, E(Q) = 0.757 iS  which have no saturation. If range constraint is not satisfied, the number of
obtained and it is small. output level in Fig. 4 becomes greater than



APPENDIXA
ESTIMATION OF ) USING AN INVARIANT SET ANALYSIS [20]

The controllability pair in (14) is given by (A + BC), B). The

minimization problem ofy is formulated as follow.
Problem 3: Assume thaf A, B, C} are given. Find the following

Y™ (>0).

are fixed,Problem4 is regarded as an LMI optimization problem
with a variable matrixZ,. Moreover, for fixeda and Z,, values, it
is considered as another LMI optimization problem.
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