学位論文

Shorter Interval from Witnessed Out-Of-Hospital Cardiac Arrest to Reaching the Target Temperature Could Improve Neurological Outcomes After Extracorporeal Cardiopulmonary Resuscitation with Target Temperature Management: A Retrospective Analysis of a Japanese Nationwide Multicenter Observational Registry

(目撃ある院外心停止に対する体温管理療法を併用した体外循環式心肺蘇生において、より 短時間の目標体温到達は神経学的予後を改善させる:日本救急医学会院外心停止レジストリ2 次解析)

山田周

Shu Yamada

熊本大学大学院医学教育部博士課程医学専攻臨床国際協力学

指導教員

芳賀 克夫 客員前教授

熊本大学大学院医学教育部博士課程医学専攻臨床国際協力学

高橋 毅 客員前准教授

熊本大学大学院医学教育部博士課程医学専攻臨床国際協力学

西川 武志 客員教授

熊本大学大学院医学教育部博士課程医学専攻臨床国際協力学

2022年3月

学位論文

- 論文題名 : Shorter Interval from Witnessed Out-Of-Hospital Cardiac Arrest to Reaching the Target Temperature Could Improve Neurological Outcomes After Extracorporeal Cardiopulmonary Resuscitation with Target Temperature Management: A Retrospective Analysis of a Japanese Nationwide Multicenter Observational Registry
 - (目撃ある院外心停止に対する体温管理療法を併用した体外循環式心肺蘇生において、より短時間の 目標体温到達は神経学的予後を改善させる:日本救急医学会院外心停止レジストリ2次解析)

著者名: 山田周

Shu Yamada

指導教員名 :

熊本大学大学院医学教育部博士課程医学専攻臨床国際協力学	芳	賀	克	夫	客員前教授
熊本大学大学院医学教育部博士課程医学専攻臨床国際協力学	高	橋	毅		客員前准教授
熊本大学大学院医学教育部博士課程医学専攻臨床国際協力学	西	Л	武	志	客員教授

災害·救命医療学担当教授 審査委員名 : 笠 岡 俊 志 循環器内科学担当教授 田 賢 辻 麻酔科学担当教授 平 田 直之 総合診療

・臨床疫学担当教授 松 井 邦 彦

2022年3月

1	Original Article
---	-------------------------

2	Shorter interval from witnessed out-of-hospital cardiac arrest to reaching the
3	target temperature could improve neurological outcomes after extracorporeal
4	cardiopulmonary resuscitation with target temperature management: a
5	retrospective analysis of a Japanese nationwide multicenter observational registry
6	
7	Shu Yamada ^{1,3†} , Tadashi Kaneko ^{2*†} , Maki Kitada ¹ , Masahiro Harada ¹ , Takeshi
8	Takahashi ¹
9	
10	¹ Emergency and Critical Care Center, Kumamoto Medical Center, Kumamoto, Japan
11	² Emergency and Critical Care Center, Mie University Hospital, Tsu, Japan
12	^{‡3} Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
13	
14	[‡] Correction added on December 29, 2022 after first online publication of December 4,
15	2020 to adjust an author affiliation on this page.
16	
17	Running head: Shorter interval of ECPR OHCA improve outcomes
18	

19 ***Corresponding author**

- 20 Tadashi Kaneko
- 21 Emergency and Critical Care Center
- 22 Mie University Hospital
- 23 2-174 Edobashi, Tsu 514-8507, Japan
- 24 TEL: +81-59-232-1111
- 25 FAX: +81-59-231-5226
- 26 E-mail: <u>kaneyui-ygc@umin.ac.jp</u>
- $\mathbf{27}$
- ²⁸ [†]These authors contributed equally to the study
- 29

30 Abstract

31	Introduction: Extracorporeal cardiopulmonary resuscitation (ECPR) with
32	extracorporeal membrane oxygenation (ECMO) is a more promising treatment for out-
33	of-hospital cardiac arrest (OHCA) than conventional cardiopulmonary resuscitation
34	(CCPR). However, previous studies that compared ECPR and CCPR included mixed
35	groups of patients with or without target temperature management (TTM). In the
36	present study, we compared the neurological outcomes of OHCA between ECPR and
37	CCPR with TTM in all patients.
38	Material and methods: We performed retrospective subanalyses of the Japanese
39	Association for Acute Medicine OHCA registry. Witnessed adult cases of cardiogenic
40	OHCA treated with TTM were eligible for this study. We used univariate and
41	multivariable analyses in all eligible patients to compare the neurological outcomes
42	after ECPR or CCPR. We also conducted propensity score analyses of all patients and
43	according to the interval from witnessed OHCA to reaching the target temperature
44	(IWT) of ≤600, ≤480, ≤360, ≤240, and ≤120 min.
45	Results: We analyzed 1146 cases. The propensity score analysis did not show a
46	significant difference in favorable neurological outcomes (defined as a Glasgow-
47	Pittsburgh Cerebral Performance Category of 1–2 at 1 month after collapse) between

 $\mathbf{2}$

48	EPCR and CCPR (odds ratio: OR 4.683 [95% confidence interval: CI 0.859–25.535], P
49	= 0.747). However, ECPR was associated with more favorable neurological outcomes in
50	patients with IWT of ≤600 min (OR 7.089 [95%CI 1.091–46.061], <i>P</i> = 0.406), ≤480
51	min (OR 10.492 [95%CI 1.534–71.773], <i>P</i> = 0.0168), ≤360 min (OR 17.573 [95%CI
52	2.486–124.233], <i>P</i> = 0.0042), ≤240 min (OR 38.908 [95%CI 5.045–300.089], <i>P</i> =
53	0.0005), and ≤120 min (OR 200.390 [95%CI 23.730–1692.211], <i>P</i> <0.001).
54	Conclusions: The present study revealed significant differences in the neurological
55	outcomes between ECPR and CCPR in patients with TTM whose IWT was ≤600 min.

- 57 Keywords: Cerebral Performance Category, conventional cardiopulmonary
- 58 resuscitation, extracorporeal cardiopulmonary resuscitation, extracorporeal membrane
- 59 oxygenation, out-of-hospital cardiac arrest, therapeutic hypothermia

61 Introduction

62	Extracorporeal cardiopulmonary resuscitation (ECPR) with extracorporeal
63	membrane oxygenation (ECMO) is a promising therapy that showed greater
64	effectiveness than conventional cardiopulmonary resuscitation (CCPR) for out-of-
65	hospital cardiac arrest (OHCA) (Chen 2019, Twohig 2019, Holmberg 2018, Kim 2016).
66	Even with ECPR, it is important to shorten the no- and low-flow time (NLT) to improve
67	the outcomes of OHCA (Wengenmayer 2017). An aggressive strategy of initiating
68	ECPR after 20 min of advanced life support provided superior improvements in
69	outcomes, compare to latter initiation (Lamhault 2017). Therefore, when comparing the
70	outcomes between ECPR and CCPR, we should consider the NLT to assess the
71	effectiveness of ECPR correctly. We previously compared the outcomes of ECPR and
72	CCPR in cases without target temperature management (TTM) in retrospective analyses
73	of a Japanese nationwide multicenter observational study. Although we found that
74	ECPR had worse outcomes in all cases, ECPR may be superior to CCPR in cases with a
75	NLT exceeding 30 min (Kitada 2020).
76	However, the efficacy of ECPR combined with TTM is unclear (Chen 2020,
77	Kim 2019). When assessing the effectiveness of TTM, various factors should be
78	considered. First, the time taken to reach the target temperature (TT) after OHCA is an

79	important aspect of TTM (The hypothermia after cardiac arrest study group 2002,
80	Bernard 2002, Nielsen 2013). However, it is unknown whether the interval from
81	witnessed OHCA to reaching the target temperature (IWT) affects the neurological
82	outcomes in cases treated with ECPR or CCPR. Therefore, we should consider the IWT
83	and NLT when comparing ECPR and CCPR in cases with TTM. Second, the TT varies
84	between 33 and 36 °C. Maintaining a TT below 34 °C is thought to result in better
85	neurological outcomes, although the effectiveness of this approach is unknown (Kalra R
86	2018). Because a lower TT might affect the outcomes and may be related to the IWT,
87	the TT should also be considered when comparing the effects of ECPR and CCPR.
88	In Japan, a nationwide observational registry of OHCA was established by the
88 89	In Japan, a nationwide observational registry of OHCA was established by the Japanese Association for Acute Medicine (JAAM-OHCA registry), with patient
89	Japanese Association for Acute Medicine (JAAM-OHCA registry), with patient
89 90	Japanese Association for Acute Medicine (JAAM-OHCA registry), with patient enrollment starting in June 2014, and now includes about 3.7% of all ECPR cases
89 90 91	Japanese Association for Acute Medicine (JAAM-OHCA registry), with patient enrollment starting in June 2014, and now includes about 3.7% of all ECPR cases (Kitamura 2018). In this study, we retrieved clinical data for all adult cases of
89 90 91 92	Japanese Association for Acute Medicine (JAAM-OHCA registry), with patient enrollment starting in June 2014, and now includes about 3.7% of all ECPR cases (Kitamura 2018). In this study, we retrieved clinical data for all adult cases of witnessed, cardiogenic OHCA registered between June 2014 and December 2017 to
89 90 91 92 93	Japanese Association for Acute Medicine (JAAM-OHCA registry), with patient enrollment starting in June 2014, and now includes about 3.7% of all ECPR cases (Kitamura 2018). In this study, we retrieved clinical data for all adult cases of witnessed, cardiogenic OHCA registered between June 2014 and December 2017 to assess the effectiveness of ECPR with TTM. We performed multivariable analyses and

97 significantly associated with the neurological outcomes.

99 Material	and	methods
-------------	-----	---------

- 100 Study design
- 101 We used the prospective JAAM-OHCA registry of OHCA patients treated at 288 critical
- 102 care centers in Japan. The registry was approved by the ethics committees at Kyoto
- 103 University, the participating institutions, and each hospital. We retrieved the clinical
- 104 data for cases registered between June 2014 and December 2017 for retrospective
- 105 analyses.
- 106

```
107 Patients
```

- 108 Between June 2014 and December 2017, a total of 34,754 cases of OHCA were
- 109 registered in the JAAM-OHCA registry. We retrieved data for patients who satisfied the
- 110 following criteria: (1) witnessed collapse with OHCA; (2) age >18 years; (3)
- 111 cardiogenic cause of OHCA; (4) ECMO started or return of spontaneous circulation
- 112 (ROSC), and hospitalization; and (5) received TTM.
- 113
- 114 Study outcomes and statistical analysis

115	Neurological outcomes were assessed in all patients using the Glasgow-
116	Pittsburgh Cerebral Performance Category (CPC), which includes five categories: CPC
117	1 (good recovery), CPC 2 (moderate disability), CPC 3 (severe disability), CPC 4
118	(vegetative state), and CPC 5 (death) (Jennett 1975). We defined favorable neurological
119	outcomes as a CPC of 1–2 at 1 month after collapse.
120	Among 1146 eligible patients, ECPR was performed in 268 and CCPR was
121	performed in 878. The patients' age, sex, bystander cardiopulmonary resuscitation
122	(BCPR), shockable rhythm (SR [ventricular fibrillation/ventricular tachycardia;
123	VF/VT]), NLT, IWT, and lower TT (\leq 34 °C) were retrieved from the database as
124	potential confounding factors for the outcomes of ECPR.
125	The patients were divided into those with favorable (CPC 1-2) or unfavorable
126	(CPC 3–5) outcomes. These two groups were compared using univariate and
127	multivariable analyses. Univariate analyses were performed with the Mann–Whitney U
128	test or Fisher's exact test, as appropriate. Multivariable analyses were performed using
129	logistic regression analysis, in which the dependent variable was favorable neurological
130	outcomes (CPC 1-2) and the independent variables were age, sex (male), BCPR, SR
131	(VF/VT) as the initial rhythm, NLT, IWT, lower TT (\leq 34 °C), and ECPR. NLT was
132	defined as the interval from witnessed OHCA to reperfusion (start of ECMO in ECPR

133 or ROSC in CCPR). IWT was defined as the interval from witnessed OHCA to reaching

134 the TT. These variables were analyzed in all eligible patients.

135 Propensity score analysis was performed by taking into account the age, sex

136 (male), BCPR, SR (VF/VT) as the initial rhythm, NLT, IWT, and lower TT (\leq 34 °C)

137 using the inverse probability of treatment-weighting (IPTW) method, to compare the

138 proportion of patients with favorable neurological outcomes (CPC 1–2) between cases

- 139 treated by ECPR or CCPR in the overall cohort and according to IWT cutoff values
- 140 ($\leq 600, \leq 480, \leq 360, \leq 240, \text{ and } \leq 120 \text{ min}$).
- 141 Multivariable analyses were also performed after dividing the patients
- 142 according to the IWT (all patients, \leq 480 min, and \leq 240 min) for ECPR and CCPR cases
- separately. As above, we performed logistic regression analysis with favorable
- 144 neurological outcomes (CPC 1–2) as the dependent variable, whereas age, sex (male),
- 145 BCPR, SR (VF/VT) as the initial rhythm, NLT, IWT, and lower TT (≤34 °C) were
- 146 included as independent variables.
- 147 In all analyses, a *P*-value of <0.05 was considered statistically significant. All
- 148 statistical analyses, except for the propensity score analysis, were performed with SPSS
- 149 version 25.0 (IBM, Armonk, NY, USA). The propensity score analysis with the IPTW
- 150 method was performed with R software version 4.0.1 (GNU general public license).

152	Results
153	The registry comprised 34,754 patients. Of 3731 cases with or without TTM, ECPR was
154	performed in 47% (268/575) and CCPR in 28% (878/3156). Overall, 1146 patients
155	satisfied all eligibility criteria (i.e., witnessed cardiogenic OHCA, age >18 years,
156	hospitalization, and treatment with TTM; Fig. 1).
157	Table 1 shows the characteristics of cases who received either ECPR ($n = 268$)
158	or CCPR ($n = 878$). Multivariable analysis revealed significant differences in age, sex
159	(male), SR (VF/VT), NLT, IWT, and favorable neurological outcomes (CPC 1–2)
160	between the two groups.
161	Table 2 compares the patients divided according to whether their neurological
162	outcomes were favorable (CPC 1–2) or unfavorable (CPC 3–5) in all eligible patients.
163	The multivariable analysis revealed significant differences in age, BCPR, SR (VF/VT),
164	NLT, and percentage of patients who received ECPR between the two groups.
165	Although the percentage of patients who received ECPR was lower among those with
166	favorable neurological outcomes, the multivariable analysis showed a positive effect of
167	ECPR on favorable neurological outcomes (odds ratio [OR] 1.817; 95% confidence
168	interval [CI] 1.048–3.149, P < 0.001).

169	Table 3 compares the favorable neurological outcomes (CPC 1–2) between the
170	ECPR and CCPR groups by propensity score analysis with the IPTW method, in the
171	overall cohort and according to IWT (≤ 600 , ≤ 480 , ≤ 360 , ≤ 240 , and ≤ 120 min). In the
172	overall cohort, ECPR did not show a significant improvement in favorable neurological
173	outcomes (CPC 1–2) (OR 4.683, 95% CI 0.859–25.535, <i>P</i> = 0.0747). However, in
174	patients with IWT \leq 600, \leq 480, \leq 360, \leq 240, and \leq 120 min, ECPR was associated with
175	improvements in favorable neurological outcomes (CPC 1-2) with OR of 7.089, 10.492,
176	17.573, 38.908, and 200.390, respectively (all <i>P</i> < 0.05).
177	Tables 4 and 5 show the results of multivariable analyses according to IWT for
178	all patients and in patients with an IWT \leq 480 or \leq 240 min for cases who received ECPR
179	(Table 4) or CCPR (Table 5), separately. Among cases who received ECPR, favorable
180	neurological outcomes (CPC 1-2) were achieved in 17% of all cases, 18% of cases with
181	
	IWT \leq 480 min, and 18% of cases with IWT \leq 240 min. IWT was not significantly
182	IWT \leq 480 min, and 18% of cases with IWT \leq 240 min. IWT was not significantly associated with favorable neurological outcomes (CPC 1–2). In this analysis, NLT was
182 183	
	associated with favorable neurological outcomes (CPC 1–2). In this analysis, NLT was
183	associated with favorable neurological outcomes (CPC 1–2). In this analysis, NLT was the only factor showing a significant association with favorable neurological outcomes

187	neurological outcomes (CPC 1-2). However, in cases who received CCPR, age, BCPR,
188	SR, and NLT were significantly associated with favorable neurological outcomes (CPC
189	1–2) in the multivariable analysis in all cases and in cases with an IWT \leq 480 or \leq 240
190	min.
191	
192	Discussion
193	In the present study, although propensity score analysis did not show
194	significant difference between ECPR and CCPR, even though NLT was longer in ECPR
195	cases (53 vs. 23 min), we found positive effects of ECPR on neurological outcomes in
196	patients with an IWT of \leq 600 min. Furthermore, the effectiveness of ECPR increased,
197	as illustrated by increasing ORs, as IWT decreased.
198	Comparing the present data with those of our previous analyses ECPR and
199	CCPR without TTM in patients registered in the JAAM-OHCA registry in the same
200	period (between June 2014 and December 2017) showed that TTM may improve the
201	neurological outcomes of OHCA (Kitada 2020). In the current analysis, among patients
202	with TTM, neurological favorable outcomes (CPC 1-2) were achieved in 17% of cases
203	who received ECPR and 44% of cases who received CCPR. These values in patients
204	with TTM are greater than those in our previous analysis of patients without TTM (7%

205	and 17%, respectively). The results of the propensity score analyses also revealed
206	differences in outcomes between the two studies. In our earlier study, we found that
207	ECPR cases was associated with significantly worse neurological outcomes ($P = 0.010$),
208	even though ECPR had significantly better neurological outcomes in patients with a
209	NLT of >30 min). In comparison, in our present study, the propensity score analysis did
210	not reveal a difference in the neurological outcomes between ECPR and CCPR in the
211	overall cohort. However, ECPR was superior to CCPR in cases with a IWT of $\leq 600 \text{ min}$
212	based on the ORs obtained by propensity score analysis.
213	In the present study, the propensity score analysis showed that a shorter IWT
214	may improve the neurological outcomes. However, in multivariable analyses of the
215	neurological outcomes in the ECPR and CCPR groups, IWT was not a significant
216	factor, nor was TTM with a lower TT. The results of the propensity score analysis in
217	patients divided by IWT might reflect the potential effectiveness of shortening the IWT,
218	but we cannot exclude the possible effect of NLT and other factors, or that shortening
219	IWT could result in worse neurological outcomes in CCPR cases without ECMO who
220	receive artificial circulatory support. The present study did not show that a lower TT
221	was advantageous. Lowering the TT is a common research topic for TTM. A meta-

223	neurological outcomes in patients who receive ECPR (Chen 2020). However, in six of
224	13 articles included in that meta-analysis, the control groups were compared with an
225	ECPR group with a lower TT or were treated without TTM. Thus, the efficacy of lower
226	TT is unclear.
227	The TTM trial conducted by Nielsen et al. revealed no advantage of a lower TT
228	for treating shockable or non-shockable OHCA (Nielsen 2013, Frydland 2015).
229	Although normothermia (36 $^{\circ}$ C) was frequently chosen as the TT, several problems
230	were reported, including low compliance with the TT, high rate of fever, and a trend
231	towards worsening in patient outcomes. Therefore, it is difficult to achieve the TT, even
232	when aiming for normothermia (Bray 2017). Other aspects of TTM are also widely
233	discussed, including how to manage induction, maintenance, rewarming, sedation, and
234	management of post-TTM fever (Taccone 2020). ECPR with ECMO makes it easier to
235	manage fever compared with using surface devices or even intravascular devices in
236	CCPR. Thus, using ECMO to control body temperature may affect the outcomes of
237	ECPR with TTM.
238	This study has several limitations. First, although the registry includes a
239	nationwide cohort, the study was performed retrospectively, which may introduce some

bias. Second, the neurological outcomes were assessed in terms of the CPC 1 month

241	after resuscitation. The neurological outcomes may have changed after 6 months or 1
242	year. Third, although the propensity score analysis demonstrated the efficacy of ECPR
243	in certain subgroups, other factors may confound the results and introduce some bias.
244	Fourth, cases without TTM were excluded in the present study, but the reasons why
245	TTM was not performed are unknown and could introduce selection bias. Forth, IWT
246	was affected by body temperature on admission, however, only 80% (926/1146) of
247	cases had data [median and interquartile range was 35.8 (34.9–36.3) 0 C, n = 926],
248	moreover, only 29% (267/926) was measured as core temperature, therefore, body
249	temperature on admission was not used for adjustment of propensity score analysis.
250	Fifth, our ECPR data showed 22% (59/268) of IWT>600 min (28 cases) or unknown
251	(31 cases), TTM with these cases were unclear and could be bias. Finally, although
252	previous and present studies have shown superiority of ECPR than CCPR in similar
253	setting, the effects of TTM during ECPR are still equivocal and the effectiveness of
254	TTM and lower TT should be examined in future trials.

256 Conclusions

257 These subanalysis of a nationwide Japanese cohort study found no difference in258 favorable neurological outcomes between ECPR and CCPR in patients who received

- 259 TTM. However, propensity score analysis showed that the neurological outcomes were
- 260 more favorable with ECPR compared with CCPR in patients with an IWT ≤ 600 min.
- 261

262 Abbreviations

- 263 ECPR: Extracorporeal cardiopulmonary resuscitation
- 264 ECMO: Extracorporeal membrane oxygenation
- 265 OHCA: Out-of-hospital cardiac arrest
- 266 CCPR: Conventional cardiopulmonary resuscitation
- 267 NLT: No- and low-flow time
- 268 TTM: Target temperature management
- 269 IWT: Interval from witnessed OHCA to reaching the target temperature
- 270 TT: Target temperature
- 271 ROSC: Return of spontaneous circulation
- 272 CPC: Glasgow–Pittsburgh Cerebral Performance Category
- 273 BCPR: Bystander cardiopulmonary resuscitation
- 274 SR: Shockable rhythm
- 275 VF: Ventricular fibrillation
- 276 VT: Ventricular tachycardia

277	OR: Odds ratio
278	CI: Confidence interval
279	
280	Declarations
281	Ethical approval and consent to participate
282	The registry was approved by the ethics committees at Kyoto University, participating
283	institutions, and each hospital.
284	
285	Research statement
286	The datasets are only available to the study group.
287	
288	Author disclosure statement
289	No competing financial interests exist.
290	
291	Formatting of funding sources
292	This study was supported by the Japanese Association for Acute Medicine and by
293	scientific research grants from the Ministry of Education, Culture, Sports, Science and
294	Technology of Japan (16K09034 and 15H05006), the Ministry of Health, Labour, and

Welfare of Japan (25112601), and JSPS KAKENHI (JP16K11409).

296

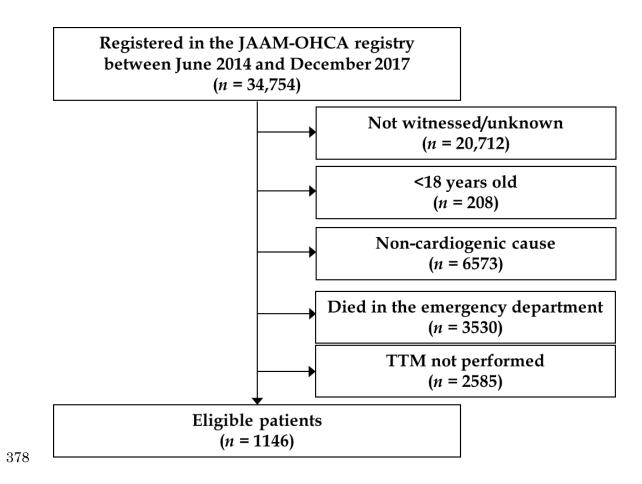
297	Authors' contributions
298	SY and TK conceived and designed the study, wrote the study protocol, contributed to
299	the acquisition of clinical data, performed the statistical analyses and wrote the first
300	draft of the manuscript. All authors reviewed and revised the manuscript, and approved
301	the final version.
302	
303	Acknowledgments
304	We wish to thank all members of the JAAM-OHCA registry involved in this multicenter
305	observational study. A list of participating institutions is available at
306	http://www.jaamohca-web.com/list/.
307	
308	References
309	Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K.
310	Treatment of comatose survivors of out-of-hospital cardiac arrest with induced
311	hypothermia. N Engl J Med 2002;346:557-563.

Bray JE, Stub D, Bloom JE, Segan L, Mitra B, Smith K, Finn J, Bernard S.

313	Changing target	t temperature fro	om 33°C to	36°C in the	ICU management	of out-of-

- hospital cardiac arrest: a before and after study. Resuscitation 2017;113:39–43.
- 315 Chen X, Zhen Z, Na J, Wang Q, Gao L, Yuan Y. Association of therapeutic
- 316 hypothermia with clinical outcomes in patients receiving ECPR after cardiac arrest:
- 317 systematic review with meta-analysis. Scand J Trauma Resusc Emerg Med
- 318 2020;28:3.doi:10.1186/s13049-019-0698-z.
- 319 Chen Z, Liu C, Huang J, Zeng P, Lin J, Zhu R, Lu J, Zhou Z, Zuo L, Liu G.
- 320 Clinical efficacy of extracorporeal cardiopulmonary resuscitation for adults with cardiac
- arrest: meta-analysis with trial sequential analysis. Biomed Res Int 2019;6414673. doi:
- 322 10.1155/2019/6414673.
- 323 Frydland M, Kjaergaard J, Erlinge D, Wanscher M, Nielsen N, Pellis T, Åneman
- A, Friberg H, Hovdenes J, Horn J, Wetterslev J, Winther-Jensen M, Wise MP,
- 325 Kuiper M, Stammet P, Cronberg T, Gasche Y, Hassager C. Target temperature
- 326 management of 33°C and 36°C in patients with out-of-hospital cardiac arrest with initial
- non-shockable rhythm–a TTM sub-study. Resuscitation 2015;89:142–148.
- 328 Holmberg MJ, Geri G, Wiberg S, Guerguerian AM, Donnino MW, Nolan JP,
- 329 Deakin CD, Andersen LW, ILCOR advanced life support and pediatric forces.
- 330 Extracorporeal cardiopulmonary resuscitation for cardiac arrest: a systematic review.

- 331 Resuscitation 2018;131:91–100.
- 332 Jennett B, Bond M. Assessment of outcome after severe brain damage. Lancet
- 333 1975;1:480–4.
- 334 Kalra R, Arora G, Patel N, Doshi R, Berra L, Arora P, Bajaj NS. Target temperature
- 335 management after cardiac arrest: systematic review and meta-analysis. Anesth Analg
- 336 2018;126:867–875.
- 337 Kim SJ, Kim HJ, Lee HY, Ahn HS, Lee SW. Comparing extracorporeal
- 338 cardiopulmonary resuscitation with conventional cardiopulmonary resuscitation: a
- meta-analysis. Resuscitation 2016;103:106–116.


340 Kim YS, Cho YH, Sung K, Ryu JA, Chung CR, Suh GY, Yang JH, Yang JH. Target

- 341 temperature management may not improve clinical outcomes of extracorporeal
- 342 cardiopulmonary resuscitation. J Intensive Care Med 2019;34:790–796.
- 343 Kitada M, Kaneko T, Yamada S, Harada M, Takahashi T. Extracorporeal
- 344 cardiopulmonary resuscitation without target temperature management for out-of-
- 345 hospital cardiac arrest patients prolongs the therapeutic time window: a retrospective
- analysis of a nationwide multicentre observational study in Japan. J Intensive Care
- 347 2020;8:58.
- 348 Kitamura T, Iwami T, Atsumi T, Endo T, Kanna T, Kuroda Y, Sakurai A, Tasaki O,

349	Tahara Y, Tsuruta R, Tomio J, Nakata K, Nachi S, Hase M, Hayakawa M, Hiruma
350	T, Hiasa K, Muguruma T, Yano T, Shimazu T, Morimura N, special committee that
351	aims to improve survival after OHCA by providing evidence-based therapeutic
352	strategy and emergency medical system from JAAM. The profile of Japanese
353	Association of Acute Medicine -out-of-hospital cardiac arrest registry in 2014-2015.
354	Acute Med Surg 2018;5:249–258.
355	Lamhault L, Hutin A, Puymirat E, Jouan J, Raphalen JH, Jouffroy R, Jaffry M,
356	Dagron C, An K, Dumas F, Marijon E, Bougouin W, Tourtier JP, Baud F, Jouven
357	X, Danchin N, Spaulding C, Carli P. A pre-hospital extracorporeal cardio pulmonary
358	resuscitation (ECPR) strategy for treatment of refractory out hospital cardiac arrest: an
359	observational study and propensity analysis. Resuscitation 2017;117:109-117.
360	Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, Horn J,
361	Hovdenes J, Kjaergaard J, Kuiper M, Pellis T, Stammet P, Wanscher M, Wise MP,
362	Åneman A, Al-Subaie N, Boesgaard S, Bro-Jeppesen S, Brunetti I, Bugge JF,
363	Hingston CD, Juffermans NP, Koopmans M, Køber L, Langørgen J, Lilja G,
364	Møller JE, Rundgren M, Rylander C, Smid O, Werer C, Winkel P, Friberg H,
365	TTM trial investigators. Target temperature management at 33°C versus 36°C after
366	cardiac arrest. N Engl J Med 2013;369:2197–2206.

367 Taccone FS, Picetti E, Vincent JL. High quality target temperature management

- 368 (TTM) after cardiac arrest. Critical Care 2020;24:6.
- 369 The hypothermia after cardiac arrest study group. Mild therapeutic hypothermia to
- improve the neurological outcome after cardiac arrest. N Engl J Med 2002;346:549–56.
- 371 Twohig CJ, Singer B, Grier G, Finney SJ. A systematic literature review and meta-
- analysis of the effectiveness of extracorporeal-CPR versus conventional-CPR for adult
- patients in cardiac arrest. J Intensive Care Soc 2019;20:347–357.
- Wengenmayer T, Rombach S, Ramshorn F, Biever P, Bode C, Duerschmied D,
- 375 Staudacher DL. Influence of loe-flow time on survival after extracorporeal
- ardiopulmonary resuscitation (eCPR). Critical Care 2017;21:157.
- 377

- 379 Figure legend
- 380 Fig. 1 Patient disposition
- 381 A total of 1146 patients were eligible for the study
- 382 JAAM-OHCA Japanese Association of Acute Medicine, Out-of-Hospital Cardiac Arrest,
- 383 *TTM* target temperature management

Variables	ECPR	CCPR	Univariate	Multivariable	OR
	(n = 268)	(n = 878)	P-value	P-value	(95% CI)
Age (years)	56 (46-66)	65 (52–73)	< 0.001	< 0.001	0.970 (0.957–0.983)
Male (%)	231 (86%)	687 (78%)	0.004	0.017	1.961 (1.131–3.402)
BCPR (%)	135 (50%)	449 (51%)	0.834	0.105	0.722 (0.487–1.070)
SR (%)	194 (72%)	498 (57%)	< 0.001	0.170	1.344 (0.881–2.049)
NLT (min) ^a	53 (45–65)	23 (15–36)	< 0.001	< 0.001	1.093 (1.078–1.108)
IWT (min) ^b	254 (106–423)	350 (239–508)	< 0.001	0.105	1.000 (0.999–1.000)
TT ≤34 °C (%)	202 (77%)	616 (72%)	0.113	0.138	1.410 (0.895–2.220)
CPC 1–2 (%)	46 (17%)	390 (44%)	< 0.001	0.490	0.833 (0.497–1.398)

384 **Table 1** Comparison of ECPR and CCPR in univariate and multivariable analyses

386 OHCA, out-of-hospital cardiac arrest; ECPR, extracorporeal cardiopulmonary resuscitation; CCPR, conventional cardiopulmonary

387 resuscitation; OR, odds ratio; CI, confidence interval; BCPR, bystander cardiopulmonary resuscitation; SR, shockable rhythm; NLT, no-

and low-flow time; IWT, interval from witnessed OHCA to reaching the target temperature; TT, target temperature; CPC, Cerebral

389 Performance Category

³⁹⁰ ^aDefined as the interval from witnessed OHCA to the start of reperfusion (start of extracorporeal membrane oxygenation for ECPR or return

391 of spontaneous circulation for CCPR)

³⁹² ^bDefined as the interval from witnessed OHCA to reaching the target temperature

Variables	Favorable outcomes	Unfavorable outcomes	Univariate	Multivariate	OR
	(CPC 1–2)	(CPC 3–5)	P-value	P-value	(95% CI)
	(n = 436)	(n = 710)			
Age (years)	58 (47–70)	65 (54–73)	< 0.001	< 0.001	0.962 (0.951-0.974
Male (%)	345 (79%)	573 (81%)	0.542	0.794	1.056 (0.702–1.586
BCPR (%)	275 (63%)	309 (44%)	< 0.001	< 0.001	2.328 (1.672-3.240
SR (%)	311 (71%)	381 (54%)	< 0.001	< 0.001	3.259 (2.285-4.650
NLT (min) ^a	17 (12–25)	39 (27–52)	< 0.001	< 0.001	0.902 (0.888-0.916
IWT (min) ^b	344 (227–481)	323 (198–496)	0.156	0.625	1.000 (0.999–1.000
TT ≤34 °C (%)	317 (75%)	501 (72%)	0.299	0.723	1.070 (0.738–1.550
ECPR (%)	46 (11%)	222 (31%)	< 0.001	0.033	1.817 (1.048–3.149

394 **Table 2** Comparison of favorable and unfavorable neurological outcomes in univariate and multivariable analyses

396 OHCA, out-of-hospital cardiac arrest; CPC, Cerebral Performance Category; OR, odds ratio; CI, confidence interval; BCPR, bystander

397 cardiopulmonary resuscitation; SR, shockable rhythm; NLT, no- and low-flow time; IWT, interval from witnessed OHCA to reaching the

398 target temperature; TT, target temperature; ECPR, extracorporeal cardiopulmonary resuscitation

^aDefined as the interval from witnessed OHCA to the start of reperfusion (start of extracorporeal membrane oxygenation for ECPR or return
 of spontaneous circulation for CCPR)

⁴⁰¹ ^bDefined as the interval from witnessed OHCA to reaching the target temperature

Variables	Treatment	п	CPC 1–2	OR	P value	
				(95% CI)		
All patients	ECPR	268	46 (17%)	4.683 (0.859–25.535)	0.0747	
	CCPR	878	390 (44%)			
IWT ^a						
≤600 min	ECPR	209	37 (18%)	7.089 (1.091–46.061)	0.0406	
	CCPR	673	308 (46%)			
≤480 min	ECPR	192	35 (18%)	10.492 (1.534–71.773)	0.0168	
	CCPR	596	273 (46%)			
≤360 min	ECPR	165	33 (20%)	17.573 (2.486–124.233)	0.0042	
	CCPR	433	191 (44%)			
≤240 min	ECPR	111	20 (18%)	38.908 (5.045-300.089)	0.0005	
	CCPR	214	92 (43%)			
≤120 min	ECPR	64	11 (17%)	200.390 (23.730–1692.211)	< 0.0001	
	CCPR	60	23 (38%)			

403 **Table 3** Comparisons between ECPR and CCPR by propensity score analysis with the IPTW method

405 OHCA, out-of-hospital cardiac arrest; IPTW, inverse probability of treatment-weighting; ECPR, extracorporeal cardiopulmonary

- 406 resuscitation; CCPR, conventional cardiopulmonary resuscitation; CPC, Cerebral Performance Category; OR, odds ratio; CI, confidence
- 407 interval; IWT, interval from witnessed OHCA to reaching the target temperature
- ⁴⁰⁸ ^aDefined as the interval from witnessed OHCA to reaching the target temperature.
- 409 The propensity score analysis incorporated the following variables: age, sex (male), bystander cardiopulmonary resuscitation, shockable
- 410 rhythm, no- and low-flow time (interval from witnessed OHCA to reperfusion), interval from witnessed OHCA to reaching the target
- 411 temperature, and target temperature \leq 34 °C.
- 412
- 413
- 414

Variables	All cases	<i>P</i> -	OR	IWT	<i>P</i> -	OR	IWT	<i>P</i> -	OR
	(n = 268)	value	(95% CI)	≤480 min	value	(95% CI)	≤240 min	value	(95% CI)
				(<i>n</i> = 192)			(<i>n</i> = 111)		
Age (years)	56 (46-66)	0.046	0.975 (0.950-1.000)	56 (46–66)	0.117	0.978 (0.952-1.006)	55 (46-66)	0.182	0.976 (0.943–1.011)
Male (%)	231 (86%)	0.192	0.541 (0.215–1.362)	164 (85%)	0.157	0.480 (0.174–1.327)	95 (86%)	0.276	0.470 (0.121–1.825)
BCPR (%)	135 (50%)	0.328	1.439 (0.695–2.981)	93 (48%)	0.889	1.058 (0.476–2.353)	53 (48%)	0.048	3.250 (1.009 -10.472)
SR (%)	194 (72%)	0.292	1.567 (0.680–3.610)	137 (71%)	0.360	1.535 (0.613–3.842)	74 (67%)	0.427	1.624 (0.491–5.375)
NLT (min) ^a	53 (45–65)	0.006	0.964 (0.939–0.990)	54 (44–66)	0.010	0.964 (0.937–0.991)	54 (44–66)	0.007	0.944 (0.906–0.985)
IWT (min) ^b	254 (106–423)	0.979	1.000 (0.999–1.001)	199 (89–301)	0.777	1.000 (0.996–1.003)	99 (75–156)	0.614	1.002 (0.993-1.012)
LTT (%)	202 (77%)	0.266	1.736 (0.657–4.585)	153 (81%)	0.299	1.862 (0.576–6.025)	96 (87%)	0.634	1.526 (0.268-8.682)
CPC 1–2	46 (17%)			35 (18%)			20 (18%)		

415 **Table 4** Multivariable analysis of favorable neurological outcomes in ECPR cases

417 OHCA, out-of-hospital cardiac arrest; ECPR, extracorporeal cardiopulmonary resuscitation; OR, odds ratio; CI, confidence interval;

418 BCPR, bystander cardiopulmonary resuscitation; SR, shockable rhythm; NLT, no- and low-flow time; IWT, interval from witnessed OHCA

419 to reaching the target temperature; LTT, lower target temperature (≤34 °C); CPC, Cerebral Performance Category

420 ^aDefined as the interval from witnessed OHCA to the start of reperfusion (start of extracorporeal membrane oxygenation)

⁴²¹ ^bDefined as the interval from witnessed OHCA to reaching the target temperature

422

Variables	All cases	<i>P</i> -value	OR	IWT	P-value	OR	IWT	P-value	OR
	(n = 878)		(95% CI)	≤480 min		(95% CI)	≤240 min		(95% CI)
				(<i>n</i> = 596)			(n = 214)		
Age (years)	65 (52–73)	< 0.001	0.958 (0.944–0.971)	65 (53–74)	< 0.001	0.958 (0.942-0.973)	67 (51–74)	< 0.001	0.947 (0.923–0.972)
Male (%)	687 (78%)	0.460	1.190 (0.750–1.888)	461 (77%)	0.795	0.931 (0.542–1.600)	157 (73%)	0.909	0.948 (0.379–2.371)
BCPR (%)	449 (51%)	< 0.001	2.502 (1.705-3.672)	304 (51%)	< 0.001	2.408 (1.534–3.780)	103 (48%)	0.019	2.614 (1.173–5.824)
SR (%)	498 (57%)	< 0.001	3.805 (2.540-5.701)	332 (56%)	< 0.001	3.723 (2.329–5.952)	111 (52%)	0.010	2.904 (1.296-6.506)
NLT (min) ^a	23 (15–36)	< 0.001	0.884 (0.867–0.901)	23 (16–36)	< 0.001	0.888 (0.869–0.908)	24 (17–37)	< 0.001	0.887 (0.851–0.923)
IWT (min) ^b	350 (239–508)	0.641	1.000 (0.999–1.000)	283 (203–373)	0.046	1.002 (1.000-1.004)	162 (115–211)	0.239	1.004 (0.997–1.011)
LTT (%)	616 (72%)	0.878	0.967 (0.632–1.481)	429 (73%)	0.916	0.973 (0.585–1.618)	144 (68%)	0.375	0.689 (0.303–1.570)
CPC 1–2	390 (44%)			273 (46%)			92 (43%)		

424 **Table 5** Multivariable analysis of favorable neurological outcomes in CCPR cases

426 OHCA, out-of-hospital cardiac arrest; CCPR, conventional cardiopulmonary resuscitation; OR, odds ratio; CI, confidence interval; BCPR,

427 bystander cardiopulmonary resuscitation; SR, shockable rhythm; NLT, no- and low-flow time; IWT, interval from witnessed OHCA to

428 reaching the target temperature; LTT, lower target temperature (≤34 °C); CPC, Cerebral Performance Category

⁴²⁹ ^aDefined as the interval from witnessed OHCA to the start of reperfusion (return of spontaneous circulation)

430 ^bDefined as the interval from witnessed OHCA to reaching the target temperature