学位論文

Validation of the obesity paradox by body mass index and waist circumference in patients undergoing percutaneous coronary intervention

(経皮的冠動脈インターベンションを受けた患者における BMI と腹囲による肥満パラドックスの検証)

白濱 裕一郎

Yuichiro Shirahama

熊本大学大学院医学教育部博士課程医学専攻循環器内科学

指導教員

辻田 賢一 教授

熊本大学大学院医学教育部博士課程医学専攻循環器内科学

2023年3月

学位論文

論文題名 : Validation of the obesity paradox by body mass index and waist circumference in patients undergoing percutaneous coronary intervention

(経皮的冠動脈インターベンションを受けた患者における BMI と腹囲による肥満パラドックスの検証)

Yuichiro Shirahama

指導教員名 : 熊本大学大学院医学教育部博士課程医学専攻循環器内科学 辻田 賢一 教授

審査委員名 : 公衆衛生学担当教授 加藤 貴彦

腎臓内科学担当教授 向山 政志

病態生化学担当教授 山縣 和也

総合診療·臨床疫学担当教授 松井 邦彦

2023年3月

1 Original Articles

2

Validation of the Obesity Paradox by Body Mass Index and Waist Circumference in Patients Undergoing Percutaneous Coronary Intervention

5

6 Short title: Obesity paradox in CAD patients

7

8 Yuichiro Shirahama, MD¹; Noriaki Tabata, MD, PhD¹; Kenji Sakamoto, MD, PhD¹; Ryota Sato, MD¹; 9 Kenshi Yamanaga, MD, PhD¹; Koichiro Fujisue, MD, PhD¹; Daisuke Sueta, MD, PhD¹; Satoshi Araki, 10 MD, PhD¹; Seiji Takashio, MD, PhD¹; Yuichiro Arima, MD, PhD¹; Seiji Hokimoto, MD, PhD¹; Koji 11 Sato, MD, PhD3; Tomohiro Sakamoto, MD, PhD4; Koichi Nakao, MD, PhD4; Hideki Shimomura, MD, 12 PhD⁵; Toshiyuki Matsumura, MD, PhD⁶; Shinji Tayama, MD, PhD⁷; Shuichi Oshima, MD, PhD⁸; Kazuteru Fujimoto, MD, PhD9; Ryusuke Tsunoda, MD, PhD10; Toyoki Hirose, MD, PhD11; Koichi 13 14 Kikuta, MD, PhD¹²; Naritsugu Sakaino, MD, PhD¹³; Shinichi Nakamura, MD, PhD¹⁴; Nobuyasu 15 Yamamoto, MD, PhD¹⁵; Ichiro Kajiwara, MD, PhD¹⁶; Satoru Suzuki, MD, PhD¹; Eiichiro Yamamoto, 16 MD, PhD¹; Koichi Kaikita, MD, PhD¹; Kenichi Matsushita, MD, PhD¹ and Kenichi Tsujita, MD, PhD1,2; On behalf of the Kumamoto Intervention Conference Study (KICS) Investigators 17

18

19 Affiliations:

20 Department of Cardiovascular Medicine, Graduate School of Medical Sciences¹, Center for Metabolic 21 Regulation of Health Aging², Kumamoto University; Department of Cardiovascular Medicine, 22 Kumamoto City Hospital³; Cardiovascular Center, Kumamoto Saiseikai Hospital⁴; Division of 23 Cardiology, Fukuoka Tokushukai Hospital⁵, Kumamoto Rosai Hospital⁶, Kumamoto General 24 Hospital⁷, Kumamoto Central Hospital⁸, National Hospital Organization Kumamoto Medical Center⁹, 25 Kumamoto Red Cross Hospital¹⁰, Minamata City Hospital and Medical Center¹¹, Shinbeppu 26 Hospital¹², Amakusa Regional Medical Center¹³, Hitoyoshi Medical Center¹⁴, Miyazaki Prefectural 27 Nobeoka Hospital¹⁵, and Arao City Hospital¹⁶, Japan

28

29 **Conflicts of interest:**

Koichi Kaikita received research grants and Kenichi Tsujita received honoraria and research grants
from Daiichi Sankyo Co., Ltd. The other authors declare no conflicts of interest. The present Registry
is funded by Daiichi Sankyo Co., Ltd. Japan.

33

34 Authorship contributions:

The authors confirm contribution to the paper as follows: study conception and design: Y.
Shirahama, N. Tabata, K.Sakamoto, R. Sato, K. Yamanaga, K. Tsujita; data collection: S.

37	Hokimoto, K. Sato, T. Sakamoto, K, Nakao, H. Shimomura, T. Matsumura, S. Tayama, S. Oshima,
38	K. Fujimoto, R. Tsunoda, T. Hirose, K. Kikuta, N. Sakaino, S. Nakamura, N. Yamamoto, I.
39	Kajiwara; analysis and interpretation of results: Y. Shirahama, N. Tabata, K. Fujisue, D. Sueta, S.
40	Araki, S. Takashio, Y. Arima, S. Suzuki, E. Yamamoto, K. Kaikita, K. Matsushita, K. Tsujita; draft
41	manuscript preparation: Y. Shirahama, N. Tabata, K. Tsujita. All authors reviewed the results and
42	approved the final version of the manuscript.
43	
44	Data Availability Statement:
45	The datasets generated during and/or analysed during the current study are available from the
46	corresponding author on reasonable request.
47	
48	Address for Correspondence:
49	Noriaki Tabata, MD, PhD
50	Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University,
51	1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
52	Phone: +81-96-373-5175. Fax: +81-96-362-3256
53	E-mail: noriakt@kumamoto-u.ac.jp
54	
55	Total word count: [3614] words. (excluding abstract, tables/figures, and references)
56	Number of Tables and Figures: [4] tables, [3] figures and [5] supplementary files.
57	

Abstract

59 **BACKGROUND:**

The paradoxical association of obesity with mortality, named the "obesity paradox", has been inconsistent, possibly due to a difference between body mass index (BMI) and central obesity, estimated by waist circumference (WC) as patterns of adiposity.

63

64 SUBJECTS/METHODS:

We enrolled 8 513 participants from the Kumamoto Intervention Conference Study, a multicenter registry that included consecutive patients undergoing percutaneous coronary intervention (PCI) at 18 centers between 2008 and 2017 in Japan. Patients were divided into quartiles in ascending order of the BMI or WC. The primary endpoints were all-cause mortality and cardiovascular death within a year.

69

70 **RESULTS:**

71 There were 186 deaths (case fatality rate, 22.1/1000 person-years) during the follow-up period. The 72 lowest group (1st quartile) of BMI or WC had the worst prognosis among the quartiles (1st quartile, 73 4.2%; 2nd quartile, 1.9%; 3rd quartile, 1.5%; 4th quartile, 1.1%; $P < 0.001 (\gamma^2)$ and 1st quartile, 4.1%; 74 2nd quartile, 2.3%; 3rd quartile, 1.2%; 4th quartile, 1.5%; $P < 0.001 (\chi^2)$, respectively). Similar results 75 were obtained for cardiovascular death. In a multivariable analysis adjusted by nine conventional 76 factors, the lowest group (1st quartile) of BMI (hazards ratio, 2.748; 95% confidence interval [CI], 77 1.712-4.411) and WC (hazards ratio, 2.340; 95% CI, 1.525-3.589) were independent prognostic factors 78 for all-cause mortality. By dividing the participants into two groups according to either the BMI or 79 WC based on the National Cholesterol Education Program Adult Treatment Panel III and World Health 80 Organization classification, the highest mortality was observed in the lower group. However, the C-81 statistic after adding BMI (quartile) to conventional factors was found to be slightly higher than BMI 82 (two categories) and WC (two categories) (0.735 vs. 0.734). 83

84 **CONCLUSIONS:**

- 85 The obesity paradox was observed in patients after PCI, and single-use of BMI (or WC) was
- 86 sufficient to predict the prognosis of patients after PCI.

Introduction

88	Obesity is a growing public health problem, and its prevalence is increasing worldwide [1].
89	In Asian countries, as well as Western countries, obesity has increased over the last few decades as a
90	result of the Westernization of lifestyles [2]. Obesity is associated with cardiovascular risk in the
91	general population, whether defined by body mass index (BMI) or waist circumference (WC) [3,4].
92	However, a counterintuitive association between obesity and mortality, termed the "obesity paradox",
93	was reported previously [5]. Although the protective effects of obesity have been reported in coronary
94	artery disease (CAD) patients, evidence for an obesity paradox in past studies has been less consistent.
95	BMI is a popular measure of body fat, and most previous studies have focused on BMI to investigate
96	the "obesity paradox". However, WC may more accurately reflect visceral adiposity than BMI [6],
97	and a previous study thus supported the use of WC in addition to BMI in assessing the risk of death
98	[7].
99	We hypothesized that the inconsistency of the "obesity paradox" may be due, in part, to a
100	difference between BMI and central obesity, estimated by WC, as patterns of adiposity. Thus, we

101 aimed to investigate the additive impact of WC on BMI on clinical outcome in CAD patients.

Materials/Subjects and Methods

103 Study population

This was a multicenter observational cohort study. Details of the Kumamoto Intervention Conference Study registry have been previously described [8]. From August 2008 to March 2017, 18 495 consecutive participants were enrolled, and the exclusion criteria were as follows: (1) no data on the BMI or WC (n = 9452) and (2) unidentified prognosis within a 1-year follow-up (n = 530). We enrolled 8 513 participants with complete WC and BMI data to examine the impact of obesity. Each institutional ethics committee approved the study, and informed consent was obtained from all participants. This study complied with the Declaration of Helsinki.

111

112 Clinical parameters

Height, body weight, and WC were measured at the initial referral. WC was measured at the midpoint between the lowest rib and the iliac crest. Patients were divided into quartiles in ascending order of the BMI or WC. Other clinical parameters have been previously described [8]. In brief, diabetes was defined as any fasting plasma glucose concentration of ≥ 126 mg/dL or a plasma glucose concentration of ≥ 200 mg/dL after 2 h from the oral glucose tolerance test or diabetes treatment. The definition of hypertension was a blood pressure of $\geq 140/90$ mmHg or hypertension treatment. Dyslipidemia was defined as low-density lipoprotein of ≥ 140 mg/dL (≥ 3.63 mmol/L), high-density lipoprotein < 40

120	mg/dL (<1.04 mmol/L), triglycerides \geq 150 mg/dL (\geq 1.7 mmol/L), or the use of lipid-lowering therapy.
121	The smoking history was determined through an interview. Chronic kidney disease (CKD) was defined
122	as an estimated glomerular filtration rate of $< 60 \text{ mL/min per } 1.73 \text{ m}^2$. Peripheral arterial disease was
123	defined as an ankle-brachial index value of < 0.9 in either leg or a history of the treatment of peripheral
124	vascular disease. Acute coronary syndrome (ACS) was defined as ST-segment elevation myocardial
125	infarction, non-ST-segment elevation myocardial infarction, or unstable angina pectoris.
126	
127	Clinical endpoints
128	The primary endpoints were 1) all-cause mortality and 2) cardiovascular death within 1 year; it is
129	reported that patients at risk of atherothrombosis may have cardiac events within a year [9]. After the
130	interventional procedure, each institution prospectively followed up with the patients, and events were
131	reported based on medical records and confirmed by direct contact with the patients and/or their
132	families. Cardiovascular death was defined as death due to myocardial infarction, congestive heart
133	failure, or documented sudden cardiac death.
134	
135	Statistical analysis
136	Continuous variables with a normal distribution are expressed as the mean \pm standard deviation, and

137 categorical data are presented as numbers (proportions). Fisher's exact test and the chi-square test

138	were used to test differences between the four groups for categorical variables. Analysis of variance
139	was used to analyze the differences in continuous variables between the four groups. The Kaplan-
140	Meier method and log-rank test were used to estimate the event probabilities at 365 days and compare
141	survival times, respectively. Hazard ratios (HRs) and 95% confidence intervals (CIs) for the clinical
142	outcome were calculated using Cox proportional hazards analysis, forced inclusion methods were used
143	for multivariable analyses, and conventional risk factors such as age, sex, diabetes, current smoking,
144	CKD, peripheral arterial disease, old myocardial infarction, ACS, and heart failure (nine prognostic
145	factors) were the variables used. The incremental effects of adding BMI or WC to the prognostic
146	factors were evaluated using continuous net reclassification improvement (NRI) and integrated
147	discrimination improvement (IDI) [10]. A C-statistic of > 0.7 was considered an acceptable
148	discriminatory power, > 0.8 excellent, and > 0.9 outstanding. The improvement in the C-statistic for a
149	model containing a new marker is defined simply; however, this increase is often very small in
150	magnitude. Therefore, improvements in the C-statistic, IDI, and NRI were evaluated in the present
151	study. C-statistics were calculated using the pROC package in R. NRI and IDI were computed using
152	the PredictABEL package. A P-value of < 0.05 was considered to denote statistical significance. All
153	statistical tests were two-sided. Statistical analyses were performed using IBM SPSS Statistics for
154	Mac, Version 26 (IBM Corp., Armonk, NY, USA) and R, version 2.7.0 (Toukei Kagaku Kenkyujo Co.
155	Ltd., Japan).

Results

157 Clinical characteristics

- 158 A total of 8 513 patients who underwent PCI were enrolled in the present study (Figure 1). The
- 159 median age of the patients was 71.0 (interquartile range: 63.0-78.0) years, and 27% were females.
- 160 The distributions of the BMI and WC of the patients are shown in Figure 2. The median BMI was
- 161 23.9 [21.8-26.1] kg/m² (Figure 2A), and the median WC was 87.0 [82.0-93.0] cm for males and 85.0
- 162 [77.5-92.9] cm for females (Figure 2B). The baseline characteristics of the cohort stratified by the
- 163 BMI and WC are summarized in Tables 1A and 1B, respectively. The BMI and WC cohorts shared
- similar clinical findings, and in both cohorts, the lowest group (1st quartile) was associated with a
- 165 higher age; lower proportions of diabetes, hypertension, dyslipidemia, current smoking, previous
- 166 myocardial infarction, and prior PCI; and higher rates of CKD (including the need for hemodialysis)

167 and ACS.

168

169 Primary endpoints at the follow-up

Overall, 186 deaths were recorded during the follow-up period, and the case fatality rate was 22.1/1000
person-years. The causes of death among the four groups are shown in Table 2. The lowest group (1st)

- 172 quartile) of BMI had the highest mortality (4.2%) compared with the other three categories (Figure
- 173 3A, upper left; 2^{nd} quartile, 1.9%; 3^{rd} quartile, 1.5%; or 4^{th} quartile, 1.1%) (P < 0.001 (χ^2)). The lowest

174 group (1st quartile) of BMI also had the highest rate of cardiovascular death (1.3%) (Figure 3A, upper 175 right; 2^{nd} quartile, 0.7%; 3^{rd} quartile, 0.6%; or 4^{th} quartile, 0.5%) (P = 0.016 (χ^2)). We performed 176 Kaplan-Meier analysis and observed that there was a significant difference in all-cause mortality 177 among the four categories (Figure 3A, lower left; log-rank P < 0.001). The difference was also 178 statistically significant for cardiovascular death (Figure 3A, lower right; log-rank P = 0.015). Similar 179 results were obtained for WC; however, the relationship between mortality, cardiovascular death, and 180 WC appeared to be reverse J-shaped; the mortality rate was the lowest in the 3rd quartile (Figure 3B). 181 Moreover, we examined all-cause mortality (Supplemental Figures 1A and 1C) and cardiovascular 182 death (Supplemental Figures 1B and 1D) within 1-month and from 1-month to 1-year. In terms of the 183 BMI and WC, the lowest group was significantly associated with all-cause mortality and 184 cardiovascular death from 1-month to 1-year (Supplemental Figures 2A to 2D).

185

186 Cox proportional hazards analysis

The results of the univariable and multivariable Cox proportional hazards analyses for all-cause mortality are summarized in Table 3. In the multivariable analysis adjusted by nine prognostic factors, the lowest group (1st quartile) of BMI and WC were independently associated with 1-year mortality (Table 3; HR, 2.748; 95% CI, 1.712-4.411; P < 0.001 and HR, 2.340; 95% CI, 1.525-3.589; P < 0.001, respectively). Even after including BMI and WC as continuous variables, BMI (HR, 0.851; 95% CI, 192 0.811-0.893; P < 0.001) and WC (HR, 0.956; 95% CI, 0.941-0.971; P < 0.001) were independent

193 prognostic factors for all-cause mortality. Neither the BMI nor the WC quartiles were associated with

194 cardiovascular death in the multivariable analyses (data not shown).

195

196 C-statistic for regression models, continuous NRI, and IDI

- 197 C-statistic values were calculated for all-cause mortality within the 1-year follow-up. The C-statistic
- 198 of the variables, including nine prognostic factors, was 0.719 (95% CI, 0.680-0.758) vs. 0.735 (95%

199 CI, 0.696-0.774) after including the BMI quartile; the continuous NRI and IDI were 0.294 (0.151-

200 0.438; P < 0.001) and 0.0055 (0.0003-0.0078; P < 0.001), respectively (Table 4). The C-statistic

201 increased from 0.735 to 0.739 by adding the WC quartile to these factors; the continuous NRI and

202 IDI were 0.358 (0.218-0.499; P < 0.001) and 0.001 (-0.001-0.0022; P = 0.076), respectively (Table

203 4). The receiver operating characteristic curve is shown in Supplemental Figure 2.

204

205 BMI/WC in two categories divided by National Cholesterol Education Program Adult Treatment

206 Panel III and World Health Organization classification

207 Patients were supplementarily divided by the modified National Cholesterol Education Program Adult

- 208 Treatment Panel III criteria with ethnic-specific values and the World Health Organization
- 209 classification for the general definition of obesity. Patients with a BMI of \geq 25 kg/m² were defined as

211 as having an obese WC. 212 The clinical parameters of the two groups are shown in Supplemental Tables 1A and 1B. Similar to 213 previous results (Tables 1A and 1B), the higher group was associated with younger age; higher 214 proportions of males and participants with diabetes, hypertension, dyslipidemia, current smoking, and 215 prior PCI; and lower rates of CKD (including the need for hemodialysis) and ACS. 216 We performed a Kaplan-Meier analysis among the two categories of BMI or WC, and as a result, non-217 obese BMI and non-obese WC showed the highest mortality (Supplemental Figures 3A and 3B upper 218 left; 2.6% vs. 1.4%; P < 0.001 and 3.0% vs. 1.4%; P < 0.001, respectively). 219 The C-statistic of the nine prognostic factors + the BMI value was 0.724 (95% CI, 0.685-0.764) and 220 continuous NRI and IDI were 0.277 (0.154-0.400; P < 0.001) and 0.0013 (0.0003-0.0023; P = 0.010), 221 respectively (Supplemental Table 2). The C-statistic increased from 0.724 to 0.734 by adding the WC 222 value to these factors; the continuous NRI and IDI were 0.402 (0.265-0.539; P < 0.001) and 0.0028 223 (0.001-0.0047; P = 0.002), respectively (Supplemental Table 2).

having an obese BMI, and those with a WC of ≥ 85 cm for men or ≥ 90 cm for women were defined

224

Discussion

226	The main findings of this study were as follows: (1) the lowest BMI or WC groups were associated
227	with worse outcomes, and 1st quartiles of BMI and WC were independent prognostic factors of all-
228	cause mortality by the multivariable analyses; (2) significant predictive model improvements by
229	significant NRI were observed after adding the BMI and then the WC quartiles to the model of
230	conventional factors; (3) significant IDI was also observed after adding the BMI quartile to the
231	model of conventional factors but not after adding the WC quartile to the model of conventional
232	factors and the BMI quartile; (4) similar results were obtained by dividing the participants into two
233	groups according to BMI or WC by the National Cholesterol Education Program Adult Treatment
234	Panel III criteria and the World Health Organization classification, and the highest mortality was
235	observed in the lower group; (5) the C-statistic after adding BMI (quartile) to the conventional
236	factors was found to be slightly better than the BMI (two categories) and WC (two categories)
237	(0.735 vs. 0.734).
238	
239	

Effect of BMI and WC in the obesity paradox

BMI is the most popular criterion of obesity and is associated with total body fat [11,12], and there
have been many reports of the "obesity paradox" using the BMI of patients with coronary artery

243	disease (CAD) [13]. However, BMI is just a surrogate measure of body fat, and the validity of the
244	"obesity paradox" using BMI has been called into question [14] because BMI does not distinguish
245	between lean and fat mass. Abdominal obesity has been reported to be significantly different in any
246	BMI category [15]. Gaining lean body mass is generally a "health index" and predictor of better
247	outcomes in humans without cardiovascular disease.
248	WC, which is the perimeter of the abdomen, is an alternative index of obesity that may be more
249	specific for visceral fat. A paradoxical link between obesity defined by WC and favorable prognosis
250	has also been demonstrated in patients with heart failure [16, 17] and atrial fibrillation [18].
251	Furthermore, Ono et al. enrolled 1 799 patients with left main CAD or three-vessel disease and
252	reported that body composition should be assessed by BMI and WC in the appropriate evaluation of
253	the long-term risk of obesity [19].
254	The present study included 8 513 patients, and we believe this is the largest study to verify the
255	"obesity paradox" in patients with CAD requiring PCI using the BMI or WC, and our results suggest
256	that higher WC is correlated with better outcomes in patients with CAD. As previously reported, this
257	study showed that the "obesity paradox" in patients with CAD could apply to the WC. Although WC
258	is a better indicator of central obesity, it is still a proxy of obesity, and as such, it can also be
259	subjected to biases since it appears that the relative proportion of lean vs. fat mass appears to be the
260	causative factor behind this "paradoxical protective effect of obesity."

261	In contrast to previous work, in the present study, the participants were divided into quartiles
262	according to their BMI and WC, and it was found that patients in the lowest group of BMI and WC
263	had the worst prognosis following PCI. It can be stated that this study confirms that other
264	anthropometric indices such as the WC provide evidence supporting the idea that after acute and
265	chronic atherothrombotic and cardiovascular diseases, it appears that some body mass is necessary
266	to face the challenges of survival. However, mortality and cardiovascular death were linear in terms
267	of the BMI but reverse J-shaped in terms of the WC. This indicates that excessive visceral fat might
268	increase mortality, suggesting that the paradoxical effect of obesity is not incremental.
269	Moreover, it was found that adding the BMI quartile improved prognosis prediction with significant
270	NRI and IDI; however, after adding the WC quartile, the increase in C-statistics was very small
271	(from 0.735 to 0.739), and its IDI was not significant ($P = 0.076$) (Table 4). In addition, the C-
272	statistic of the nine prognostic factors + BMI (two categories) + WC (two categories) was 0.734,
273	whereas the C-statistic of the nine prognostic factors + BMI (quartile) was 0.735 (Table 4 and
274	Supplemental Table 2). This indicates that the addition of BMI (quartile) is only slightly better than
275	the addition of BMI (two categories) and WC (two categories) for prognosis prediction after PCI.
276	Therefore, for prognosis prediction after PCI, measurement of BMI or WC may be sufficient
277	(measurements of both BMI and WC are not always necessary).

Possible explanations for the protective effect of obesity

280	Several reports have addressed the mechanisms of the "obesity paradox:" (1) plasma lipoproteins
281	decrease inflammatory cytokines [20]; (2) people with obesity have more energy than people
282	without obesity to move their bodies due to their increased weight, and myocardial ischemic
283	symptoms tend to occur earlier [21]; (3) antithrombotic and/or antiplatelet drugs increase the risk of
284	adverse events at extremely low body weights, resulting in increased bleeding events in the non-
285	obesity group [22]; (4) anatomical differences might contribute to the benefit of people with obesity,
286	as petite patients usually have smaller coronary arteries and might suffer from an increased risk of
287	stent thrombosis after PCI [23]. Therefore, lean body mass might explain why people without
288	obesity have increased mortality and why overweight patients have better outcomes [24]. In contrast
289	to visceral (abdominal) fat, abdominal subcutaneous fat accumulation results in beneficial systemic
290	metabolism and cardiovascular protective effects [25].
291	In the present study, we additionally investigated all-cause mortality and cardiovascular death within
292	1 month and from 1 month to 1 year. We found that the difference in the survival rate among the four
293	groups became clear after 1 month (Supplemental Figure 1). Therefore, it could be said that obesity
294	is involved in long-term survival, and is not a problem during the PCI perioperative period. It is
295	possible that advances in PCI devices and techniques have brought about this result, and the number
296	of cardiovascular deaths reported in the present study in 1-year were as few as 64.

297	The underweight group had a higher rate of cardiovascular death (Figure 3); however, many non-
298	cardiovascular events also caused death. One possible explanation is that people without obesity
299	may be frail and cachexic and may suffer from non-cardiac diseases such as cancer, sepsis, and
300	hemorrhagic events. In fact, when we investigated the cause of death, we found that the lowest group
301	tended to die from various causes such as sepsis, bleeding, cancer, and multiple organ failure (Table
302	2). For such patients, a reduction to 2.5 mg may be considered for low doses of prasugrel to reduce
303	bleeding events.
304	
305	Study limitations
306	The present study has several limitations. First, we enrolled only Japanese patients, and our results
307	may not be generalizable worldwide. Second, 9 982 patients (54%) were excluded from the study
308	due to the lack of BMI, WC, and follow-up data within 1 year. Comparing the excluded and
309	analyzed cohorts, there were significant differences in sex; age; weight; height; BMI; WC;
310	hypertension; dyslipidemia; smoking; CKD; old myocardial infarction; ACS; and the rate of use of
311	aspirin, clopidogrel, cilostazol, ticlopidine, and sarpogrelate. Therefore, selection bias may have
312	occurred. Third, WC and BMI were assessed at one point; however, the degree of obesity and loss of
313	muscle mass may represent the progression of chronic disease. In addition, the lowest BMI or WC
314	group may include poorly nourished patients and those with cancer history; however, the present

315	study is based on a multicenter registry, and the present data lacked nutritional indicators (such as
316	albumin and lymphocyte counts) and cancer details. Moreover, we did not directly quantify or
317	measure fat mass, such as with dual-energy X-ray absorptiometry or computed tomography. In
318	addition, there were no data on cytokines or adipokines. In addition, WC is one of the most difficult
319	anthropometric measures in terms of consistency between evaluators, and since this is a multicenter
320	study, we cannot discard the possibility that variations in measurements across institutions might
321	introduce some bias into the statistical analyses. In addition, the fact that neither BMI quartile nor
322	WC quartile was associated with cardiovascular death in the multivariable analyses suggests that
323	there may be some biases in this dataset.
324	
325	Conclusion

326 The obesity paradox was observed in patients after PCI, and single-use of BMI (or WC) was sufficient 327 to predict the prognosis of patients after PCI, lending further support to the paradoxical effect of 328 obesity.

329		References
330	1.	Abelson P, Kennedy D. The obesity epidemic. Science 2004; 304(5676): 1413.
331		
332	2.	Hori M, Kitamura A, Kiyama M, Imano H, Yamagishi K, Cui R et al. Fifty-year Time Trends in
333		Blood Pressures, Body Mass Index and their Relations in a Japanese Community: The
334		Circulatory Risk in Communities Study (CIRCS). J Atheroscler Thromb 2017; 24(5): 518-529.
335		
336	3.	Hu G, Tuomilehto J, Silventoinen K, Barengo N, Jousilahti P. Joint effects of physical activity,
337		body mass index, waist circumference and waist-to-hip ratio with the risk of cardiovascular
338		disease among middle-aged Finnish men and women. Eur Heart J 2004; 25(24): 2212-9.
339		
340	4.	Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, Commerford P et al. Obesity and the
341		risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study.
342		Lancet 2005; 366(9497): 1640-9.
343		
344	5.	Uretsky S, Messerli FH, Bangalore S, Champion A, Cooper-Dehoff RM, Zhou Q et al. Obesity
345		paradox in patients with hypertension and coronary artery disease. Am J Med 2007; 120(10):
346		863-70.
347		
348	6.	Klein S, Allison DB, Heymsfield SB, Kelley DE, Leibel RL, Nonas C et al. Waist circumference
349		and cardiometabolic risk: a consensus statement from Shaping America's Health: Association for
350		Weight Management and Obesity Prevention; NAASO, The Obesity Society; the American
351		Society for Nutrition; and the American Diabetes Association. Am J Clin Nutr 2007; 85(5):
352		1197-202.
353		
354	7.	Pischon T, Boeing H, Hoffmann K, Bergmann M, Schulze MB, Overvad K et al. General and
355		abdominal adiposity and risk of death in Europe. N Engl J Med 2008; 359(20): 2105-20.
356		
357	8.	Tabata N, Yamamoto E, Hokimoto S, Yamashita T, Sueta D, Takashio S et al. Prognostic Value
358		of the CHADS(2) Score for Adverse Cardiovascular Events in Coronary Artery Disease Patients
359		Without Atrial Fibrillation-A Multi-Center Observational Cohort Study. J Am Heart Assoc 2017;
360		6 (8).
361		
362	9.	Steg PG, Bhatt DL, Wilson PW, D'Agostino R, Sr., Ohman EM, Röther J et al. One-year
363		cardiovascular event rates in outpatients with atherothrombosis. Jama 2007; 297 (11): 1197-206.

364		
365	10.	Pencina MJ, D'Agostino RB, Sr., D'Agostino RB, Jr., Vasan RS. Evaluating the added predictive
366		ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med
367		2008; 27 (2): 157-72; discussion 207-12.
368		
369	11.	Poirier P. Adiposity and cardiovascular disease: are we using the right definition of obesity? Eur
370		<i>Heart J</i> 2007; 28 (17): 2047-8.
371		
372	12.	Willett WC, Dietz WH, Colditz GA. Guidelines for healthy weight. N Engl J Med 1999; 341(6):
373		427-34.
374		
375	13.	Romero-Corral A, Montori VM, Somers VK, Korinek J, Thomas RJ, Allison TG et al.
376		Association of bodyweight with total mortality and with cardiovascular events in coronary artery
377		disease: a systematic review of cohort studies. Lancet 2006; 368(9536): 666-78.
378		
379	14.	Romero-Corral A, Somers VK, Sierra-Johnson J, Jensen MD, Thomas RJ, Squires RW et al.
380		Diagnostic performance of body mass index to detect obesity in patients with coronary artery
381		disease. Eur Heart J 2007; 28(17): 2087-93.
382		
383	15.	Nazare JA, Smith J, Borel AL, Aschner P, Barter P, Van Gaal L et al. Usefulness of measuring
384		both body mass index and waist circumference for the estimation of visceral adiposity and
385		related cardiometabolic risk profile (from the INSPIRE ME IAA study). Am J Cardiol 2015;
386		115 (3): 307-15.
387		
388	16.	Oreopoulos A, Padwal R, Kalantar-Zadeh K, Fonarow GC, Norris CM, McAlister FA. Body
389		mass index and mortality in heart failure: a meta-analysis. Am Heart J 2008; 156(1): 13-22.
390		
391	17.	Clark AL, Fonarow GC, Horwich TB. Waist circumference, body mass index, and survival in
392		systolic heart failure: the obesity paradox revisited. J Card Fail 2011; 17(5): 374-80.
393		
394	18.	Rodríguez-Reyes H, Lara-Vaca S, Ochoa-Guzmán A, Chiquete E. Obesity Paradox and
395		12 Month Outcome in Patients with Atrial Fibrillation. Arch Med Res. 2021;52(2):233-9.
396		
397	19.	Ono M, Kawashima H, Hara H, O'Leary N, Gao C, Wang R, et al. Impact of Body
398		Composition Indices on Ten-year Mortality After Revascularization of Complex Coronary
399		Artery Disease (From the Syntax Extended Survival Trial). Am J Cardiol. 2021;151:30-8.

400		
401		
402	20.	Rauchhaus M, Coats AJ, Anker SD. The endotoxin-lipoprotein hypothesis. Lancet 2000;
403		356 (9233): 930-3.
404		
405	21.	Horwich TB, Fonarow GC. Reverse epidemiology beyond dialysis patients: chronic heart
406		failure, geriatrics, rheumatoid arthritis, COPD, and AIDS. Semin Dial 2007; 20(6): 549-53.
407		
408	22.	Schenkeveld L, Magro M, Oemrawsingh RM, Lenzen M, de Jaegere P, van Geuns RJ et al. The
409		influence of optimal medical treatment on the 'obesity paradox', body mass index and long-term
410		mortality in patients treated with percutaneous coronary intervention: a prospective cohort study.
411		<i>BMJ Open</i> 2012; 2 (1): e000535.
412		
413	23.	Schunkert H, Harrell L, Palacios IF. Implications of small reference vessel diameter in patients
414		undergoing percutaneous coronary revascularization. J Am Coll Cardiol 1999; 34(1): 40-8.
415		
416	24.	Antonopoulos AS, Oikonomou EK, Antoniades C, Tousoulis D. From the BMI paradox to the
417		obesity paradox: the obesity-mortality association in coronary heart disease. Obes Rev 2016;
418		17 (10): 989-1000.
419		
420	25.	Ross R, Blair S, de Lannoy L, Després JP, Lavie CJ. Changing the endpoints for determining
421		effective obesity management. Prog Cardiovasc Dis 2015; 57(4): 330-6.
422		
423		
140		

424 **Figure legends** 425 Figure 1. Study flow chart. 426 From August 2008 to March 2017, 18 495 consecutive participants were recorded in this registry, 427 and we excluded patients without the BMI or WC data and those with unidentified prognoses during 428 the 1-year follow-up. As a result, 8 513 patients who underwent PCI were included in this study. 429 Patients were divided into quartiles in ascending order of the BMI or WC. 430 BMI, body mass index; WC, waist circumference; PCI, percutaneous coronary intervention 431 432 Figure 2. Histogram of BMI (A) and WC (B) in all patients. 433 The median BMI was 23.9 [21.8-26.1] kg/m², and the median WC was 87.0 [82.0-93.0] cm for 434 males and 85.0 [77.5-92.9] cm for females. 435 BMI, body mass index; WC, waist circumference 436 437 Figure 3. Event rates among the four groups according to the BMI (A) and WC (B) in the 438 quartile. 439 The survival rate was examined using the BMI and WC in the quartile, respectively. The lowest group 440 (1st quartile) of BMI had the highest mortality (4.2%) compared with the three other categories (Figure 3A, upper left; 2^{nd} quartile, 1.9%; 3^{rd} quartile, 1.5%; or 4^{th} quartile, 1.1%) (P < 0.001(χ^2)). The lowest 441

group (1st quartile) of BMI also had the highest rate of cardiovascular death (1.3%) (Figure 3A, upper

443 right; 2^{nd} quartile, 0.7%; 3^{rd} quartile, 0.6%; or 4^{th} quartile, 0.5%) (P = 0.016(χ^2)). We performed

- 444 Kaplan-Meier analysis and observed that there was a significant difference in all-cause mortality
- 445 among the four categories (Figure 3A, lower left; log-rank P < 0.001). The difference was also
- statistically significant for cardiovascular death (Figure 3A, lower right; log-rank P = 0.015). Similar
- 447 results were obtained for WC (Figure 3B).
- 448 BMI, body mass index; WC, waist circumference

	1 st quartile	2 nd quartile	3 rd quartile	4 th quartile	P value
	BMI<21.84	21.84≦BMI<23.94	23.94≦BMI<26.10	26.10≦BMI	
	(n = 2136)	(n = 2114)	(n = 2135)	(n = 2128)	
Age in years (median)	75.0 (67.0 - 81.0)	72.0 (64.0 - 79.0)	70.0 (62.0 - 77.0)	67.0 (59.0 - 75.0)	< 0.001
Female, n (%)	741 (34.7)	524 (24.8)	482 (22.6)	506 (23.8)	< 0.001
Height (cm)	158.0 ± 9.6	160.0 ± 9.0	160.9 ± 9.0	161.2 ± 9.5	< 0.001
Weight (kg)	50.2 ± 7.5	58.9 ± 6.8	64.7 ± 7.3	74.7 ± 10.9	< 0.001
BMI (kg/cm²)	20.0 ± 1.5	22.9 ± 0.6	24.9 ± 0.6	28.7 ± 2.6	< 0.001
Waist Circumference (cm)	77.7 ± 7.1	84.3 ± 5.9	88.9 ± 6.0	96.7 ± 8.4	< 0.001
eGFR mL/min/1.73 m ²	59.1 ± 25.6	61.1 ± 22.3	63.8 ± 21.7	64.1 ± 23.7	< 0.001
HbA1c (%)	6.2 ± 1.2	6.3 ± 1.1	6.4 ± 1.2	6.7 ± 2.7	< 0.001
Diabetes, n (%)	778 (36.4)	809 (38.3)	906 (42.4)	1076 (50.6)	< 0.001
Hypertension, n (%)	1587 (74.3)	1658 (78.4)	1703 (79.8)	1805 (84.8)	< 0.001
Dyslipidaemia, n (%)	1158 (54.2)	1332 (63.0)	1467 (68.7)	1565 (73.5)	< 0.001
Smoking, n (%)	424 (19.9)	438 (20.7)	479 (22.4)	530 (24.9)	0.003
CKD, n (%)	1002 (46.9)	937 (44.3)	857 (40.1)	851 (40.0)	< 0.001
On HD, n (%)	172 (8.1)	100 (4.7)	71 (3.3)	69 (3.2)	< 0.001
Prior MI, n (%)	340 (15.9)	397 (18.8)	383 (17.9)	418 (19.6)	0.040
Prior PCI, n (%)	476 (22.3)	556 (26.3)	583 (27.3)	600 (28.2)	< 0.001
Prior CABG, n (%)	95 (4.4)	90 (4.3)	84 (3.9)	94 (4.4)	0.811
Composite of PAD, n (%)	224 (10.5)	166 (7.9)	164 (7.7)	132 (6.2)	< 0.001
ACS, n (%)	987 (46.2)	964 (45.6)	870 (40.7)	876 (41.2)	< 0.001
DES, n (%)	1589 (74.4)	1585 (75.0)	1599 (74.9)	1606 (75.5)	0.882

Table 1A. Baseline Characteristics Stratified by Body Mass Index in Quartile

Anti thrombotic agents

after PCI

Aspirin, n (%)	2120 (99.3)	2088 (98.8)	2115 (99.1)	2108 (99.1)	0.560
Clopidogrel, n (%)	1541 (72.1)	1517 (71.8)	1519 (71.1)	1499 (70.4)	0.489
Prasugrel, n (%)	285 (13.3)	267 (12.6)	279 (13.1)	292 (13.7)	0.539
Cilostazol, n (%)	49 (2.3)	54 (2.6)	48 (2.2)	44 (2.1)	0.694
Ticlopidine, n (%)	268 (12.5)	285 (13.5)	286 (13.4)	294 (13.8)	0.709
Sarpogrelate, n (%)	13 (0.6)	16 (0.8)	17 (0.8)	17 (0.8)	0.713
DOAC, n (%)	62 (2.9)	46 (2.2)	55 (2.6)	48 (2.3)	0.453
Warfarin, n (%)	182 (8.5)	150 (7.1)	141 (6.6)	151 (7.1)	0.339

Abbreviations: BMI, body mass index; eGFR, estimated glomerular filtration rate; CKD, chronic kidney

disease; HD, haemodialysis; MI, myocardial infarction; PCI, percutaneous coronary intervention; CABG,

coronary artery bypass; PAD, peripheral arterial disease; ACS, acute coronary syndrome; DES, drug-eluting

stent; DOAC, direct oral anticoagulants

	1 st quartile	2 nd quartile	3 rd quartile	4 th quartile	P value
	WC<80 cm	80 cm≦WC<87cm	87cm≦WC<93cm	93 cm≦WC	
	(n = 1792)	(n = 2438)	(n = 2066)	(n = 2217)	
Age in years (median)	75.0 (66.0 - 81.0)	72.0 (64.0 - 79.0)	70.0 (62.0 - 77.0)	68.0 (60.0 - 76.0)	< 0.001
Female, n (%)	710 (39.6)	600 (24.6)	435 (21.1)	508 (22.9)	0.017
Height (cm)	156.0 ± 9.3	159.4 ± 8.8	161.3 ± 8.7	162.7 ± 9.3	< 0.001
Weight (kg)	50.6 ± 8.4	58.6 ± 7.8	64.4 ± 8.4	73.3 ± 11.6	< 0.001
BMI (kg/cm²)	20.7 ± 2.5	23.0 ± 2.1	24.7 ± 2.2	27.6 ± 3.2	< 0.001
Waist Circumference (cm)	73.9 ± 4.7	83.2 ± 2.1	89.5 ± 1.7	99.0 ± 6.1	< 0.001
eGFR mL/min/1.73 m ²	59.3 ± 25.2	62.5 ± 22.3	63.5 ± 22.2	62.4 ± 24.2	< 0.001
HbA1c (%)	6.2 ± 1.1	6.3 ± 1.1	6.5 ± 2.7	6.6 ± 1.3	< 0.001
Diabetes, n (%)	599 (33.4)	924 (37.9)	910 (44.0)	1136 (51.2)	< 0.001
Hypertension, n (%)	1339 (74.7)	1889 (77.5)	1664 (80.5)	1861 (83.9)	< 0.001
Dyslipidaemia, n (%)	981 (54.7)	1513 (62.1)	1406 (68.1)	1622 (73.2)	< 0.001
Smoking, n (%)	322 (18.0)	514 (21.1)	477 (23.1)	558 (25.2)	0.001
CKD, n (%)	835 (46.6)	1029 (42.2)	838 (40.6)	945 (42.6)	0.004
On HD, n (%)	143 (8.0)	102 (4.2)	72 (3.5)	95 (4.3)	< 0.001
Prior MI, n (%)	279 (15.6)	437 (17.9)	366 (17.7)	456 (20.6)	0.004
Prior PCI, n (%)	418 (23.3)	619 (25.4)	545 (26.4)	633 (28.6)	0.006
Prior CABG, n (%)	76 (4.2)	120 (4.9)	79 (3.8)	88 (4.0)	0.302
Composite of PAD, n (%)	169 (9.4)	193 (7.9)	151 (7.3)	173 (7.8)	0.071
ACS, n (%)	804 (44.9)	1093 (44.8)	884 (42.8)	916 (41.3)	0.050
DES, n (%)	1364 (76.1)	1814 (74.4)	1505 (72.8)	1696 (76.5)	0.025

Table 1B. Baseline Characteristics Stratified by Waist Circumference in Quartile

Anti thrombotic agents

after PCI

Aspirin, n (%)	1780 (99.3)	2405 (98.6)	2049 (99.2)	2197 (99.1)	0.308
Clopidogrel, n (%)	1279 (71.4)	1753 (71.9)	1489 (72.1)	1555 (70.1)	0.837
Prasugrel, n (%)	243 (13.6)	299 (12.3)	262 (12.7)	319 (14.4)	0.002
Cilostazol, n (%)	27 (1.5)	63 (2.6)	53 (2.6)	52 (2.3)	0.141
Ticlopidine, n (%)	241 (13.4)	325 (13.3)	269 (13.0)	298 (13.4)	0.580
Sarpogrelate, n (%)	10 (0.6)	18 (0.7)	18 (0.9)	17 (0.8)	0.726
DOAC, n (%)	44 (2.5)	55 (2.3)	57 (2.8)	55 (2.5)	0.010
Warfarin, n (%)	129 (7.2)	180 (7.4)	145 (7.0)	170 (7.7)	0.785

Abbreviations: BMI, body mass index; eGFR, estimated glomerular filtration rate; CKD, chronic kidney

disease; HD, haemodialysis; MI, myocardial infarction; PCI, percutaneous coronary intervention; CABG,

coronary artery bypass; PAD, peripheral arterial disease; ACS, acute coronary syndrome; DES, drug-eluting

stent; DOAC, direct oral anticoagulants

	1^{st} quartile (n = 2136)	2^{nd} quartile (n = 2114)	3^{rd} quartile (n = 2135)	4^{th} quartile (n = 2128)
– Cardiac, n (%)	27 (1.3)	14 (0.7)	12 (0.6)	11 (0.5)
Stroke, n (%)	0 (0.0)	1 (0.0)	0 (0.0)	1 (0.0)
Sepsis, n (%)	18 (0.8)	6 (0.3)	1 (0.0)	2 (0.1)
Bleeding, n (%)	10 (0.5)	3 (0.1)	8 (0.4)	1 (0.0)
Cancer, n (%)	12 (0.6)	7 (0.3)	4 (0.2)	5 (0.2)
MOF, n (%)	9 (0.4)	2 (0.1)	3 (0.2)	0 (0.0)
Sepsis, n (%)	1 (0.1)	1 (0.0)	0 (0.0)	0 (0.0)
Renal failure, n (%)	4 (0.2)	1 (0.0)	0 (0.0)	0 (0.0)
DIC, n (%)	1 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
NOMI, n (%)	0 (0.0)	0 (0.0)	1 (0.0)	0 (0.0)
Unknown, n (%)	3 (0.2)	0 (0.0)	2 (0.1)	0 (0.0)
Others, n (%)	13 (0.6)	7 (0.3)	5 (0.2)	4 (0.2)
Total	89 (4.2)	40 (1.9)	33 (1.5)	24 (1.1)

Table 2A. Cause of Death for the quartile on BMI

Abbreviations: MOF, multiple organ failure; DIC, disseminated intravascular coagulation; NOMI, non-occlusive mesenteric ischemia

	1 st quartile (n = 1792)	2^{nd} quartile (n = 2438)	3^{rd} quartile (n = 2066)	4^{th} quartile (n = 2217)
– Cardiac, n (%)	21 (1.2)	21 (0.9)	8 (0.4)	14 (0.6)
Stroke, n (%)	1 (0.1)	0 (0)	0 (0.0)	1 (0.0)
Sepsis, n (%)	16 (0.9)	7 (0.3)	1 (0.0)	3 (0.1)
Bleeding, n (%)	7 (0.4)	8 (0.3)	5 (0.2)	2 (0.1)
Cancer, n (%)	10 (0.6)	9 (0.4)	4 (0.2)	5 (0.2)
MOF, n (%)	8 (0.4)	1 (0.0)	5 (0.2)	0 (0.0)
Sepsis, n (%)	1 (0.1)	0 (0.0)	1 (0.0)	0 (0.0)
Renal failure, n (%)	3 (0.2)	1 (0.0)	1 (0.0)	0 (0.0)
DIC, n (%)	1 (0.1)	0 (0.0)	0 (0.0)	0 (0.0)
NOMI, n (%)	0 (0.0)	0 (0.0)	1 (0.0)	0 (0.0)
Unknown, n (%)	3 (0.2)	0 (0.0)	2 (0.1)	0 (0.0)
Others, n (%)	10 (0.6)	9 (0.4)	2 (0.1)	8 (0.4)
Total	73 (4.1)	55 (2.3)	25 (1.2)	33 (1.5)

Table 2B. Cause of Death for the quartile on WC

Abbreviations: MOF, multiple organ failure; DIC, disseminated intravascular coagulation; NOMI, non-occlusive mesenteric ischemia

		Univariable Regression			Multivariable Regression			Multivariable Regression			
						Model ①			Model 2		
Variabl	e	HR	95% CI	P value	HR	95% CI	P value	HR	95% CI	P value	
BMI											
	4 th quartile		Reference			Reference					
	3 rd quartile	1.375	0.813 - 1.326	0.235	1.273	0.743 - 2.179	0.379				
	2 nd quartile	1.684	1.015 - 2.794	0.043	1.440	0.858 - 2.417	0.168				
	1 st quartile	3.751	2.390 - 5.887	< 0.001	2.748	1.712 - 4.411	< 0.001				
WC											
	4 th quartile		Reference						Reference		
	3 rd quartile	0.813	0.483 - 1.367	0.435				0.760	0.447 - 1.293	0.312	
	2 nd quartile	1.523	0.989 - 2.344	0.056				1.407	0.905 - 2.189	0.130	
	1 st quartile	2.771	1.837 - 4.180	< 0.001				2.340	1.525 - 3.589	< 0.001	
Sex		0.878	0.640 - 1.206	0.422	1.232	0.877 - 1.730	0.229	1.291	0.919 - 1.815	0.141	
Age		1.060	1.043 - 1.076	< 0.001	1.041	1.023 - 1.059	< 0.001	1.045	1.027 - 1.063	< 0.001	
CKD		2.574	1.899 - 3.491	< 0.001	1.820	1.319 - 2.512	< 0.001	1.790	1.297 - 2.468	< 0.001	
ACS		1.707	1.277 - 2.281	< 0.001	1.656	1.215 - 2.257	0.001	1.669	1.225 - 2.274	0.001	
OMI		1.493	1.070 - 2.084	0.018	1.524	1.083 - 2.145	0.016	1.530	1.086 - 2.155	0.015	
DM		1.203	0.901 - 1.605	0.211	1.385	1.027 - 1.867	0.033	1.433	1.061 - 1.935	0.019	
Smokir	ıg	0.878	0.612 - 1.258	0.478	1.291	0.872 - 1.913	0.202	1.327	0.896 - 1.965	0.159	
HF		2.615	1.942 - 3.521	< 0.001	1.803	1.318 - 2.466	< 0.001	1.861	1.362 - 2.543	< 0.001	
PAD		2.120	1.426 - 3.150	< 0.001	1.776	1181 - 2.671	0.006	1.804	1.201 - 2.710	0.004	

Table 3. Cox proportional hazard analysis for all-cause mortality in 4 categories of BMI or WC

Adjusted by age, sex, chronic kidney disease, acute coronary syndrome, old myocardial infarction, diabetes,

current smoking, heart failure, and peripheral arterial disease. Abbreviations: HR, hazard ratio; CI, confidence interval; BMI, body mass index; WC, waist circumference; CKD, chronic kidney disease; ACS, acute coronary syndrome; OMI, old myocardial infraction; DM, diabetes; HF, heart failure; PAD, peripheral arterial disease; ACS, acute coronary syndrome;

Voriable	C-statistics	NRI	P value	IDI	Р
variable					value
Factor 9	0.719				
Factor 9 + BMI (quartile)	0.735	0.294 (0.151-0.438)	< 0.001	0.0055 (0.0003-0.0078)	< 0.001
Factor 9 + BMI + WC (quartile)	0.739	0.358 (0.218-0.499)	< 0.001	0.001 (-0.001-0.0022)	0.076

Table 4. NRI and IDI by adding quartiles of BMI and WC to 9 prognostic factors

Abbreviations: Factor 9 (age, sex, chronic kidney disease, acute coronary syndrome, old myocardial infarction, diabetes, current smoking, heart failure, and peripheral arterial disease); NRI, net reclassification improvement; IDI, integrated discrimination improvement; BMI,

body mass index; WC, waist circumference

Body mass index (BMI, kg/m²)

	Non-Obesity	Obesity	P value
	(Low BMI:	(High BMI:	
	n=5424)	n=3089)	
Age in years (median range)	73.0 (65.0 - 80.0)	68.0 (60.0 - 75.0)	<0.001
Female, n (%)	1519 (28.0)	734 (23.8)	<0.001
Height (cm)	159.4 ± 9.3	161.1 ± 9.4	<0.001
Weight (kg)	56.5 ± 9.0	72.1 ± 10.7	<0.001
BMI (kg/m ²)	22.1 ± 2.1	27.7 ± 2.6	<0.001
Waist Circumference (cm)	82.5±7.6	94.6±8.3	< 0.001
eGFR mL/min/1.73 m ²	60.8 ± 23.4	64.1 ± 23.4	<0.001
HbA1c (%)	6.3 ± 1.1	6.6 ± 2.3	<0.001
Diabetes, n (%)	2082 (38.4)	1487 (48.2)	< 0.001
Hypertension, n (%)	4183 (77.3)	2570 (83.3)	<0.001
Dyslipidaemia, n (%)	3295 (60.8)	2227 (72.2)	< 0.001
Smoking, n (%)	1111 (20.5)	760 (24.7)	<0.001
CKD, n (%)	2415 (44.7)	1232 (40.0)	< 0.001
On HD, n (%)	308 (5.7)	104 (3.4)	<0.001
Prior MI, n (%)	947 (17.5)	591 (19.2)	0.057
Prior PCI, n (%)	1364 (25.2)	851 (27.6)	0.016
Prior CABG, n (%)	230 (4.2)	133 (4.3)	0.911
Composite of PAD, n (%)	481 (8.9)	205 (6.6)	< 0.001
ACS, n (%)	2410 (44.4)	1287 (41.7)	0.013
DES, n (%)	4060 (74.9)	2319 (75.1)	0.835
Anti thrombotic agents after PCI			
Aspirin, n (%)	5366 (99.1)	3060 (99.2)	0.811
Clopidogrel, n (%)	3891 (72.0)	2183 (70.9)	0.317
Prasugrel, n (%)	708 (37.0)	414 (38.1)	0.556
Cilostazol, n (%)	129 (2.4)	66 (2.1)	0.498
Ticlopidine, n (%)	702 (13.0)	429 (13.9)	0.219
Sarpogrelate, n (%)	40 (0.7)	23 (0.7)	1.000
DOAC, n (%)	138 (7.8)	73 (6.8)	0.604
Warfarin, n (%)	414 (7.6)	210 (6.8)	0.154

Supplemental table 1A. Baseline Characteristics Stratified by Body Mass Index-defined obesity

Abbreviations: BMI, body mass index; eGFR, estimated glomerular filtration rate; CKD, chronic kidney disease; HD, haemodialysis; MI, myocardial infarction; PCI, percutaneous coronary intervention; CABG, coronary artery bypass; PAD, peripheral arterial disease; ACS, acute coronary syndrome; DES, drug-eluting

stent; BMS, bare metal stent; DOAC, direct oral anticoagulants

	Non-Obesity	Obesity	P value
	(Low WC:	(High WC:	
	n=4180)	n=4333)	
Age in years (median range)	73.0 (65.0 - 80.0)	69.0 (61.0 - 76.0)	<0.001
Female, n (%)	1606 (38.4)	647 (14.9)	<0.001
Height (cm)	157.0 ± 9.3	163.0 ± 8.4	<0.001
Weight (kg)	54.5 ± 8.7	69.5 ± 10.4	<0.001
BMI (kg/m ²)	22.1 ± 2.6	26.1 ± 3.1	<0.001
Waist Circumference (cm)	79.4 ± 6.0	94.2 ± 6.8	<0.001
eGFR mL/min/1.73 m ²	60.8 ± 24.0	63.2 ± 22.9	<0.001
HbA1c (%)	6.3 ± 1.1	6.6 ± 2.0	<0.001
Diabetes, n (%)	1538 (36.8)	2031 (47.0)	<0.001
Hypertension, n (%)	3215 (77.0)	3538 (81.8)	<0.001
Dyslipidaemia, n (%)	2485 (59.5)	3037 (70.2)	<0.001
Smoking, n (%)	757 (18.2)	1114 (25.8)	<0.001
CKD, n (%)	1872 (45.0)	1775 (41.1)	<0.001
On HD, n (%)	250 (6.0)	162 (3.7)	<0.001
Prior MI, n (%)	672 (16.1)	866 (20.0)	<0.001
Prior PCI, n (%)	955 (23.8)	1220 (28.2)	<0.001
Prior CABG, n (%)	194 (4.6)	169 (3.9)	0.096
Composite of PAD, n (%)	346 (8.3)	340 (7.9)	0.473
ACS, n (%)	1887 (44.9)	1820 (42.0)	0.007
DES, n (%)	3135 (75.0)	3244 (74.9)	0.900
Anti thrombotic agents after PCI			
Asprin, n (%)	4131 (99.0)	4295 (99.2)	0.206
Clopidogrel, n (%)	3020 (72.5)	3054 (70.7)	0.067
Prasugrel, n (%)	516 (37.2)	606 (37.6)	0.820
Cilostazol, n (%)	92 (2.2)	103 (2.4)	0.612
Ticlopidine, n (%)	550 (13.2)	581 (13.4)	0.749
Sarpogrelate, n (%)	29 (0.7)	34 (0.8)	0.705
DOAC, n (%)	99 (7.2)	112 (7.1)	0.886
Wafarin, n (%)	309 (7.4)	315 (7.3)	0.835

Supplemental table 1B. Baseline characteristics stratified by waist circumference-defined obesity

Abbreviations: BMI, body mass index; eGFR, estimated glomerular filtration rate; CKD, chronic kidney disease; HD, haemodialysis; MI, myocardial infarction; PCI, percutaneous coronary intervention; CABG, coronary artery bypass; PAD, peripheral arterial disease; ACS, acute coronary syndrome; DES, drug-eluting

stent; BMS, bare metal stent; DOAC, direct oral anticoagulants

Variable	C-statistics	NRI	P value	IDI	P value
Factor 9	0.719				
Factor 9 + Low BMI	0.724	0.277 (0.154-0.400)	< 0.001	0.0013 (0.0003-0.0023)	0.01
Factor 9 + Low BMI + Low WC	0.734	0.402 (0.265-0.539)	< 0.001	0.0028 (0.001-0.0047)	0.002

Supplemental table 2. NRI and IDI by adding BMI and WC to 9 prognostic factors

Abbreviations: Factor 9 (age, sex, chronic kidney disease, acute coronary syndrome, old

myocardial infarction, diabetes, current smoking, heart failure, and peripheral arterial disease); NRI, net reclassification improvement; IDI, integrated discrimination improvement; BMI, body mass index; WC, waist circumference

(Days)

Supplemental figure 1C

