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Regular Article
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a b s t r a c t

The concentration and distribution of a drug and its metabolites in tissues are key factors for elucidating
both drug efficacy and toxicity in drug development. In this study we developed a pharamaco-imaging
procedure for 12 agents and investigated the relationship between the properties of target compounds
and the sensitivities of detection in matrix-assisted laser desorption/ionization-mass spectrometer im-
aging (MALDI-MSI). We prepared mock samples with mouse liver homogenates diluted with gelatin
solution, limit of detection concentrations of each compound was confirmed. The correlation was
evaluated between the intensities of mass signals obtained in MALDI-MSI with each test compound (the
intensities of the test compounds) at a consistent concentration and the properties of each test com-
pound. The liver homogenate diluted with gelatin solution showed easier handling and lower coefficients
of variation than did liver homogenate only, and can be used as a good surrogate matrix. Based on the
analysis of 12 agents, the protein binding ratios showed significant correlation to the detection sensi-
tivities. We presented a procedure for standardization of pharmaco-imaging method development with
an in-tissue method using MALDI-MS. Our results indicated the correlation between test compound’s
sensitivity and their protein binding ratios in plasma or serum.
© 2021 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. This is an open access article

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In drug development, drug delivery to target sites is one of the
most crucial issues since this property directly relates to drug ef-
ficacy. Therefore, it is essential to develop appropriate assay
methods that can evaluate the concentrations of drugs at target
sites. The liquid chromatography-mass spectrometry (LC/MS) is
highly sensitive and selective and now considered one of the
standard tools for drug development. However, the major disad-
vantage of the LC/MS is that the information on the spatial distri-
bution of the administered drug and its metabolites in tissues are

lost in the process of the extraction of target compounds and their
metabolites from collected samples [1,2].

Alternatively, imaging technologies provide methods that
compensate for the above disadvantage. Imaging with autoradi-
ography (ARG) often has been used classically in pharmacokinetic
studies[3]. ARG, however, also has problems such as the indis-
pensable requirement for a radioisotope-labeled compound (RI),
and it can be difficult to distinguish the administered compound
from its metabolites. Recently, imaging with matrix-assisted laser
desorption/ionization-mass spectrometry (MALDI-MS) is becoming
increasingly prominent in pharmacokinetic studies as a technique
that resolves those issues [4e11].

The concept of MALDI-MSI was introduced in 1997 by Caprioli
et al. for the rapid and direct profiling of the analytes within a tissue
section or an organ [12,13]. In this process, first, the matrix is uni-
formly deposited over various tissue sections to produce mixed
crystals with components containing the tissue sections. Second,
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pulsed laser irradiation of the sample over a predetermined two-
dimensional array directly generates ion plumes. Third, the ana-
lyte molecules are ionized by being protonated or deprotonated in
the hot plume of ablated gases. Fourth, the ionized molecules are
introduced into a MS for analysis [14,15].

For bioanalytical method development using MS, the conditions
of pretreatment and ionization are crucial parameters. When
samples are analyzed by LC/MS, the test compounds are extracted
from collected samples (pretreatment), and subsequently analyzed
(ionized) after separation on a column. Therefore, we often inves-
tigate the optimized conditions of extraction and ionization sepa-
rately. (A biological sample is used to optimize the extraction
condition, and pure test compound [not include biological
component] is used to optimize the operating parameters.) The
ease of ionization of target compounds is empirically estimated
using target compounds’ properties, such as pKa, Log P, and
polarizability. In the case of MALDI-MSI, extraction and ionization
are almost simultaneously carried out in the same spot. Thus, a
(mimetic) sample is required that both extraction and ionization
can be optimized. Suitable mimetic samples must be homogeneous
and easy to obtain, and must closely match the properties of the
analyte present in the actual samples. Four principal approaches for
quantification via MALDI-MSI have been reported: the in-solution
method, the on-tissue method, the in-tissue method, and the se-
rial section method[16]. Preparation of the mimetic samples by the
in-tissue method is favored, because the in-tissue method analyzes
mimetic samples prepared by spiking test compounds in the blank
tissue homogenate, thereby reflecting most of the properties of the
analyte present in the real sample. In the present work, we focused
on target compounds in the tissues; the majority of such target
compounds are bound to proteins in the tissues. Like pKa, Log P, and
polarizability, the protein binding ratio is expected to be a key
parameter for the development of assay methods incorporating
MALDI-MSI.

We here presented a procedure for standardization of
pharmaco-imaging method development using the in-tissue
method with MALDI-MS against 12 agents [10 anticancer agents
(afatinib, dasatinib, docetaxel, erlotinib, fluorouracil, gefitinib,
imatinib, nilotinib, olaparib, and osimertinib), 1 antiviral agent
(raltegravir), and 1 hypoglycemic agent (sitagliptin)]. Moreover, we
estimated key parameters affecting the intensities of the target
compounds by investigating the relationship between the sensi-
tivities of target compounds and those properties.

2. Materials and methods

2.1. Reagents and materials

Afatinib, osimertinib, and gefitinib were purchased from
Chemscene (Monmouth Junction, NJ, USA). Dasatinib, erlotinib,
imatinib, olaparib, and nilotinib were purchased from Selleck
Chemicals (Houston, TX, USA). Fluorouracil was purchased from
Tokyo Chemical Industry (Tokyo, Japan). Raltegravir was purchased
from Toronto Research Chemicals (North York, ON, Canada). Sita-
gliptin (sitagliptin phosphate), a-cyano-4-hydroxycinnamic acid
(a-CHCA), 2,5-dihydroxybenzoic acid (DHB), and gelatin from
porcine skin were purchased from Sigma-Aldrich (St. Louis, MO,
USA). HPLC-grade trifluoroacetic acid (TFA), and LC-MS-grade
methanol were purchased from Kanto Chemical Co. (Tokyo,
Japan). Docetaxel, formic acid (FA), LC-MS-grade acetonitrile, and
acetone were purchased from Wako Pure Chemical Industries
(Osaka, Japan). Blank tissue (mouse liver tissue was used herein as
example) was collected in National Cancer Center Research Insti-
tute. That was approved by the Institutional Animal Ethics Com-
mittee of the National Cancer Center Research Institute (Permission

Number: T17-073-M02) and carried out in accordance with the
guidelines.

2.2. Preparation of sample blocks

Each test compound was dissolved in 50% methanol solution to
prepare a standard solution. A portion of mouse liver was trans-
ferred to a 0.5-mL polypropylene tube to prepare a homogenate
[17]. As a first step, the liver was homogenized with zirconium
beads (ZB-10; TOMY SEIKO, Tokyo, Japan) for 120 s at 5000 rpm
using a TOMY Microsmash™ MS-100R (TOMY SEIKO). Next, a
portion of the liver homogenate was transferred to a 2.0-mL poly-
propylene tube and weighed; the homogenate then was mixed
with an equal weight of a 100-mg/mL gelatin solution to yield a 50%
homogenate. Aliquots of the 50% homogenate were dispensed into
other 2.0-mL polypropylene tubes and spiked with one of the
standard solutions; the resulting mixtures were shaken on a vortex
mixer, yielding homogenates containing the test compounds at
final concentrations of 10 ng/mg (10 ng/mg in the 50% homogenate
is equivalent to 20 ng/mg in pure liver; hereafter, concentrations
are described as concentrations in liver homogenate).

To prepare (the limit of detection) LOD test samples, the ho-
mogenates at 20 ng/mg were prepared by serial dilution in blank
homogenate using pipettes. The concentrations (ng/mg) of each
test compound were as follows: afatinib: 1, 0.5, 0.25, and 0.1;
dasatinib: 2, 1, 0.5, 0.25, 0.1, and 0.05; erlotinib: 0.1, 0.05, 0.025, and
0.01; gefitinib: 1, 0.5, 0.25, and 0.1; nilotinib: 4, 2, 1, 0.5, 0.2, 0.1, and
0.05; imatinib: 20, 10, 5, 2, 1, 0.5, and 0.2; osimertinib: 20, 10, 5, and
2.5; olaparib: 20,10, 5, 2, and 1; raltegravir: 10, 5, 2.5,1, and 0.5; and
sitagliptin: 10, 5, 2, and 1.

A solution of gelatin at 100 mg/mL was poured into a mold
(Tissue-Tek Cryomold No. 4566; Sakura Finetek, Torrance, USA) and
allowed to cool at 4 �C for 30 min. A spuit (polyethylene spoids 1-
4656-01, As One Corporation, Osaka, Japan) was used to generate
holes in the surface of the solidified gelatin. The homogenate
samples were injected carefully into the holes in the gelatin and the
block then was rapidly frozen with dry ice.

The prepared gelatin block was sliced into 8-mm sections
at �20 �C using a cryo-microtome (CM1950; Leica Microsystems
K$K., Tokyo, Japan) [7,10]. The obtained sections were mounted on
an indium tin oxide-coated glass slide (Matsunami Glass, Osaka,
Japan), and ionization agents (matrices) then were deposited onto
the sections [7,10].

2.3. Matrix deposition

a-CHCA and DHB were selected as ionization agents (referred to
as “matrices") [11,15,18]. A solution of a-CHCA at 7 mg/mL was
prepared in 0.1% TFA or FA containing 50% acetone; a solution of
DHB at 30 mg/mL was prepared in 0.1% TFA or FA containing 50%
acetonitrile. These matrix solutions were sprayed by using an ul-
trafine sprayer system (SMALDIprep, TransMIT, Giessen, Germany)
or a hand sprayer (GSI Creos, Tokyo, Japan) [7,10]. A description of
the matrix deposition conditions employed here is provided in
Electronic Supplementary Material (ESM), Tabs. S1 and S2.

2.4. Reference sample

Reference samples were prepared to investigate the intensities
of pure test compounds (without biological components). The
reference sample was prepared by mixing each standard solution
and a solution of a-CHCA in the ratio of 50 to 50 (final test com-
pound concentration is 5 mg/mL). One microliter of each reference
sample was spotted on an indium tin oxide-coated glass slide.
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2.5. MALDI-MSI

MALDI-MSI was performed on a MALDI-ion trap-time of flight
(TOF) mass spectrometer (iMScope, Shimadzu, Kyoto, Japan) [8,10].
Imaging data were obtained using Imaging MS Solution (ver. 1.20;
Shimadzu) and then processed using Biomap software (version
3.8.0.4; Novartis, Basel, Switzerland) [8,10].

2.6. Analytical conditions

The prepared samples were analyzed in quadruplicate. First, a
pulsed laser beamwas used to irradiate 100 spots (as grid of 10� 10
pixels, at a pitch of 80 mm) per sample. Subsequently, this set was
shifted by a half pitch in the direction of the X-axis, the Y-axis, or
both the X- and Y-axes, and irradiation with the pulsed laser beam
was repeated. Data for the selection of optimal conditions were
collected with total ion monitoring, and data for the LOD were
collected with product ion monitoring. The optimal conditions of
the iMScope are described in ESM Tab 3. Other acquisition pa-
rameters, including polarity (positive), shot per spot (100), and
laser frequency (1 kHz), were held constant. The concentrationwas
determined as the LOD when the data met the following
conditions.

1. The product ion for quantification of the test compound was
detected at more than 2 spots per set.

2. More than half of the four sets satisfied the above condition.

2.7. Calculation of coefficients of variation (CV)

The average intensity/set was calculated from the results of the
intensity of 100 spots. The average intensity/sample was calculated
from the results of the quadruplicate analyses (the results of 4
average intensity/set). Intra-sample CVs were calculated from the
results of the average intensity/set; inter-sample CVs were calcu-
lated from the results of the average intensity/sample.

2.8. Statistical analysis

Spearman’s correlation test was conducted using R version 3.5.2
[19]. A p-value < 0.05 was considered as being statistically signifi-
cant. Data are presented as mean ± SD unless otherwise indicated.

3. Results

3.1. The effect of the addition of gelatin solution

A schematic of the experimental design is shown in Fig. 1. The
samples that contained 1 and 2 ng/mg erlotinib were prepared in
liver homogenate or liver homogenate supplemented with the
gelatin solution. Then, the intensities of each sample were analyzed
after treatment using a-CHCA as a matrix. The data were obtained
from three separate samples (separate sections). Intra- and inter-
sample CVs of values for the 1-ng/mg sample with added gelatin
were 6.5e21.1% and 24.7%, respectively, while those of 1-ng/mg
sample without additive were 29.8e55.5% and 46.3%, respectively.
The intra- and inter-sample CVs of the 2-ng/mg sample with added
gelatin were 8.7e25.5% and 18.9%, respectively, while those of the
additive-free sample were 10.9e33.8% and 25.8%, respectively.
Thus, at both concentrations of erlotinib, the CVs of liver homog-
enate with added gelatin solution were smaller than those of
additive-free liver homogenate.

3.2. Selection of optimal conditions for detecting test compounds

Wemainly investigated molecular targeted drugs, including the
12 agents listed in Table 1. MS imaging is suitable for an analysis of
the heterogeneous tissues such as tumors because MS imaging has
an advantage that the information on the spatial distribution of the
administered drug and its metabolites in tissues are understood.
Accordingly, in this study we investigated anticancer agent, espe-
cially molecular targeted drug that is one of major targets in the
development of anticancer agent, those agents were selected as
representative examples of molecular targeted drug. The laser po-
wer that showed the highest intensity of test compounds was
selected by investigating the average intensities of 100 spots at
various laser powers. The laser power was optimized for each test
compound. Optimized laser powers are listed in ESM, Table S3.
Liver homogenates with 50% gelatin solution were prepared for
each test compound. The precursor ion intensities of different
adduct ions (H, Na, K) for each test compound in liver homogenate
with gelatin solution, organized by adduct ion and matrix, are
shown in Fig. 2; each compound was tested at a concentration of
20 ng/mg. Two matrices, a-CHCA and DHB, were compared. The
blank liver homogenate containing gelatin solution also was
analyzed to confirm the selectivity of detection. For most of the test
compounds, greater intensities were obtained with a-CHCA as the
matrix than with DHB; similarly, for most of the test compounds,
the intensities of the proton adduct ions also were greater than
those of other adduct ions such as sodium and potassium. However,
the signal to noise ratios using DHB were higher than that of CHCA
for some compounds (erlotinib, osimeritinib, and olaparib). These
results were caused that CHCA would have ionized co-existing
biological components (such as salt, organic acid, lipid, sugar,
protein, etc.) more efficiently than DHB. (In other words, DHB may
be able to ionize these compounds more selectively than CHCA.)

The results suggested that the intensity of the precursor ion
included signals from interfering components originating from
liver homogenates or gelatin. The precursor ion was fragmented by
collision-induced dissociation (CID) to improve selectivity, and the
obtained specific fragment ions were used for detection. The
collision energy was used to select the highest intensity of test
compounds by investigating the average intensities of 100 spots at
various collision energies. The collision energy was optimized for
each test compound. Optimized collision energies, precursor ions,
and specific product ions are listed in ESM, Table S3 and Fig. S1.

The LOD for each test compound was determined according to
themethods described above. MS imaging at 20 ng/mg and the LOD
are shown Fig. 3. The values of the LOD of each test compound were
as follows: erlotinib, 0.05 ng/mg; nilotinib, 0.1 ng/mg; imatinib,
0.2 ng/mg; dasatinib, 0.5 ng/mg; gefitinib, 0.5 ng/mg; afatinib, 1 ng/
mg; olaparib, 2 ng/mg; sitagliptin, 2 ng/mg; osimertinib, 5 ng/mg;
and raltegravir, 5 ng/mg. The LOD of erlotinibwas the lowest among
the test compounds. At concentrations of 20 ng/mg, specific
product ions of fluorouracil and docetaxel were not detected in
liver homogenates.

3.3. Correlation between intensities and properties of test
compounds

The correlations between the specific product ion intensities
and properties (protein binding ratio, Log P, and polarizability) of
test compounds were determined to better understand the prop-
erties that caused differences in the LODs among the various test
compounds. The results obtained with 20-ng/mg samples were
used to assess these relationships because the 20-ng/mg concen-
tration was tested for most compounds detected in the present
study. The correlations between the intensities and properties of
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test compounds are shown in Fig. 4 and ESM Figs. S2 and S3. The
values of Log P, polarizability, and protein binding ratio in plasma or
serumwere obtained from DrugBank or the package inserts for the
respective drugs [20,21]. Osimertinib was excluded because of the
low signal intensity and significant variations.

The intensity of test compounds correlated significantly with
the protein binding ratio (r ¼ 0.81368 [p ¼ 0.01]), indicating that
the protein binding ratio might represent a property affecting the
drug ionization in tissue. It should be noted that although the
protein binding ratios of test compounds correlatedwith both Log P
and polarizability (r ¼ 0.67626 [p ¼ 0.02] and 0.68338 (p ¼ 0.01),
respectively), the intensities did not demonstrate significant cor-
relations with either Log P or polarizability (r ¼ 0.60000 [p ¼ 0.10]
and 0.53333 [p ¼ 0.15], respectively).

We analyzed reference samples (pure compound) to investigate
the protein binding affecting tissue’s the drug ionization. The in-
tensity of pure test compounds also correlated with the protein
binding ratio (r¼ 0.81368[p ¼ 0.01]).

4. Discussion

The aims of this study were to generate a standardized pro-
cedure for developing a MALDI-MSI assay and to explore key

properties of target compounds that affect the intensities of
MALDI-MSI. We developed a procedure for determining operating
parameters by using an in-tissue approach [16] using liver ho-
mogenate; the procedure was independent of the specific target
compound. Thus, the procedure proposed in this study should be
feasible as a standard assay protocol in MALDI-MSI. Furthermore,
we investigated the relationship between the intensities of target
compounds (as obtained with our method) and other properties
(Log P, polarizability, and protein binding ratio). Our analysis
revealed that the intensity showed a correlation with the protein
binding ratio, but did not correlate with either Log P or polariz-
ability. The results suggested that the protein binding ratio should
play an important role in estimating the sensitivity of a test com-
pound in biological specimens.

The in-tissue approach is the only way to evaluate both
extraction and ionization every laser shots, because a mimetic tis-
sue closely matches the properties of the test compound present in
the real sample [16,17,22].We used a liver homogenate as amimetic
tissue because the liver is the largest organ in the body and it is easy
to prepare a homogenate of this organ [17,22e24]. However,
additive-free tissue (liver) homogenate shows very high viscosity.
Accordingly, we adopted the liver homogenate diluted with gelatin
solution as a blank sample because gelatin is a biological protein

Fig. 1. Schematic of the experimental design. (a): top view, (b): side view A laser beamwas used to irradiate liver homogenate containing gelatin solution; MS data were recorded at
each X- and Y-axis position. First, a pulsed laser beamwas used to irradiate 100 spots (as a grid of 10�10 pixels). Subsequently, this set was shifted by a half pitch in the direction of
the X-axis, the Y-axis, or both the X- and Y-axes, and irradiation with the pulsed laser beam was repeated.

Table 1
The testing compounds and those properties.

Name Efficacy Molecular weight
(Average)

Chemical formula Theoretical m/z Protein binding (%) Log P Polarizability

[MþH]þ [MþNa]þ [MþK]þ

Afatinib Tyrosine kinase inhibitor 485.9380 C24H25ClFN5O3 486.1703 508.1522 524.1262 95 3.77 50.07
Dasatinib Tyrosine kinase inhibitor 488.0060 C22H26ClN7O2S 488.1630 510.1449 526.1189 96 2.77 51.58
Docetaxel Tubulin depolymerization inhibitor 807.8792 C43H53NO14 808.3539 830.3358 846.3098 94 4.1 82.06
Erlotinib Tyrosine kinase inhibitor 393.4357 C22H23N3O4 394.1761 416.1581 432.1320 95 3.13 43.48

Fluorouracil Antimetabolites 130.0772 C4H3FN2O2 131.0251 153.0071 168.9810 8.9 �0.58 9.46
Gefitinib Tyrosine kinase inhibitor 446.9020 C22H24ClFN4O3 447.1594 469.1413 485.1153 90 4.02 46.11
Imatinib Tyrosine kinase inhibitor 493.6027 C29H31N7O 494.2663 516.2482 532.2222 95 3.47 55.54
Nilotinib Tyrosine kinase inhibitor 529.5158 C28H22F3N7O 530.1911 552.1730 568.1470 98 4.51 52.35
Olaparib Tyrosine kinase inhibitor 434.4628 C24H23FN4O3 435.1827 457.1646 473.1386 82 2.68 44.03

Osimertinib Tyrosine kinase inhibitor 499.6190 C28H33N7O2 500.2769 522.2588 538.2327 95 4.47 56.84
Raltegravir Antiviral 444.4163 C20H21FN6O5 445.1630 467.1450 483.1189 83 �0.39 42.47
Sitagliptin Hypoglycemic agent 407.3136 C16H15F6N5O 408.1254 430.1073 446.0812 38 1.95 32.66
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obtained from collagen and often is used as an embedding medium
and surrogate material in MALDI-MSI [25e28]. The present study
indicated that the tissue homogenate diluted with a gelatin solu-
tion is an effective matrix for improving intensity variation. We
consider that the low intensity variation is the most important at
MALDI-IMS method development. We infer that this advantage
(compared to unsupplemented liver homogenate) is caused by
improved homogeneity, miscibility, and tissue homogenate
handling following dilution with the gelatin solution. This is a
major advantage because normalizing analyte ion intensity using
reference compounds is difficult to improve the variation of the
intensity due to the poor homogeneity, miscibility, and tissue ho-
mogenate handling. Moreover, using the study procedure proposed
here, it is possible to examine multiple concentrations in one sec-
tion because the sample blocks were prepared by injecting tissue
homogenates diluted with gelatin solution into holes in solidified
gelatin. In the context of method development, it is advantageous
to be able to select operating parameters based on the results from
one sample. In addition, we were able to select operating param-
eters by confirming reproducibility because the present study
procedure enabled analysis in quadruplicate.

In our experience, it is thought that compounds that contain
ionic functional moieties with high hydrophilicity have a tendency
to be ionized efficiently, yielding a high sensitivity. In the present
study, however, higher sensitivities were obtained for the com-
pounds with higher protein binding ratios; such compounds typi-
cally show higher hydrophobicities [29]. Hydrophobicity typically
is evaluated by polarizability and Log P. We also confirmed the
correlation between protein binding ratio and the parameters of
polarizability and Log P in this study. The intensities of ions
correlated with protein binding ratio; however, these did not relate
to polarizability or Log P.

Thus, these results suggest that the polar character of the
compound does not directly influence the sensitivity ofMALDI-MSI.
Instead, the protein binding ratio is a crucial factor. When the pure

compound is analyzed, only the compound will receive the protons
generated from the matrix. On the other hand, when a biological
sample is analyzed, test compounds and other components are
simultaneously ionized because biological samples include many
components (such as salt, organic acid, lipid, protein, etc.). Thus,
those compounds compete for protons (this is called the “matrix
effect”). In this study, the protein binding ratio showed the corre-
lation with the intensity of pure test compound and that of the test
compound in liver homogenate diluted with gelatin solution. We
guessed that it would not be critical for MALDI’s ionization effi-
ciency whether the compound is binding to the protein, the protein
binding ratio as physical property would be a key.

The general principle of MALDI revolves around the rapid photo-
volatilization of a sample embedded in a UV-absorbing matrix [30].
The analytes mixed with a matrix solution form a crystal. The
irradiation of this mixture by a laser induces the ionization of the
matrix, followed by desorption and then the transfer of protons
from the photo-excited matrix to the analyte to form a protonated
molecule. Nishikaze et al. [31] have reported that the ionization
yield Ji can be expressed as

Ji ¼ I � Jv

(I: ionization efficiency, Jv: the rate of desorption or vaporization
of neutral molecules)

They have reported that I can be related to thermochemical
quantities such as proton affinity (protonated form), Jv can be
related to aromaticity in MALDI [31,32]. On the other hand, the
driving forces for protein binding come from intermolecular
interaction such as hydrophobic interactions, electrostatic in-
teractions, hydrogen bonds, and van der Waals forces. Proton af-
finity and aromaticity are closely related to hydrogen bonding and

Fig. 2. Intensity of each adduct ion of blank and analyte samples. The signals shown in blank samples are interfering signals originating from liver homogenates or gelatin because
of poor mass resolution power. Thus, signals of test compounds sample also include interfering signals. Intensities were converted to units of per pmol. Data are presented as mean
± SD (n¼4).
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hydrophobic interactions. Therefore, we estimated that the protein
binding rate correlated with the ion intensity.

We could not detect a specific product ion for docetaxel, and
could hardly detect a specific product ion for osimertinib at 20 ng/
mg, suggesting that the theory described above is not applicable to
those compounds. Because MALDI-MSI includes a highly complex
ionization process, it is difficult to estimate the intensities of all
compounds with only one parameter such as protein binding ratio.
We did not include fluorouracil in the theory described above since
its specific product ion was not detected at 20 ng/mg; however, the
low intensity of fluorouracil may be caused by low protein binding.

The present study suggested that liver homogenate diluted with
gelatin solution is a useful matrix for the development of analytical
methods for MALDI-MSI. The present study also indicated the
possibility that the protein binding ratio plays an important role in
estimating the sensitivity of a target compound in biological
specimens. Our results in this study were investigated mostly using
anticancer agents, however, our results would be applicable to
other character (physicochemical property and pharmacological
action etc) drugs. Furthermore, our results could not be applied
successfully to all compounds, suggesting that parameters other

than the protein binding ratio should be investigated. In this work,
we did not conduct normalization and correction with a reference
compound; the use of such a reference compound, preferably a
labeled version of the target analyte would be an obvious next step
[33,34]. The utility of a reference compound to reduce the intensity
variability and increase data quality in our protocols would need to
be evaluated. Additionally, the investigation of quantification
would be essential [35,36]. The difference of matrix effect between
the calibration sample and test sample will lead to overestimation
or underestimation of concentrations, when calibration samples
are not the same with test samples (for example, calibration sam-
ples are prepared from liver homogenate diluted with gelatin so-
lution, test samples are tumor). However, there are many issues to
be resolve for quantification by MALDI-MSI. Although, the
normalization analyte ion intensity using reference compounds is
one of the solutions the normalization analyte ion intensity dose
not resolve all issues. (For example, the stability of prepared sam-
ple, the determination of LLOQ, the preparation method of QC
sample, and differences in the size of the ROI (region of interest)
between calibrated and real samples etc. Therefore, we did not
investigate to quantify in this study.) Quantification by MALDI-MSI

Fig. 3. MALDI-MS imaging at 20 ng/mg and LOD in liver homogenate containing gelatin solution LOD: Limit of detection, Mass tolerance is ± 0.02 Da, Twenty nanograms per
milligram is equivalent to 20 mg/mL when the density of the liver homogenate diluted with gelatin solution is 1 g/mL.
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would be a major challenge. The approaches of the present study
should remain valid for other types of mass analyzers such as
quadrupole-TOF [37], Kingdontrap [38], fourier transform ion
cyclotron resonance mass spectrometry (FT-ICR) [39] and, so on. A
procedure for standardization of method development by MALDI-
MSI assay protocol would contribute to the acquisition of repro-
ducible data. The insight that protein binding ratio correlates with
the sensitivity of the target compound would allow the sensitivity
of the target compound in biological samples to be estimated. It is
currently difficult to obtain highly reproducible, highly selective,
highly specific, and quantitative data on the distribution of drugs or
biomarkers in tissue; however the investigations of normalization
and correction with a reference compound and quantification
would contribute to obtaining such data by MALDI-MSI. Such data
are essential to provide new applications and insights into molec-
ular processes, facilitating the efficient evaluation of drugs in pre-
clinical studies to develop new pharmaceutical products.

In conclusion, we presented a procedure for standardization of
method development by MALDI-MSI assay protocol and indicated
the possibility that the protein binding ratio indicates the sensi-
tivities of target compounds. It is hoped that the present approach
will contribute to further progress in the application of MALDI-MSI
techniques and the ability to develop suitable assay protocols.
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Tab. S1 Matrix deposit conditions (SMALDIprep) 

Applied compounds were afatinib, dasatinib, erlotinib, gefitinib, imatinib, nilotinib, 

olaparib, osimertinib and raltegravir. 

 

Parameters  Setting  

Gas  Nitrogen  

Gas flow rate  5 L/min  

Matrix flow rate  5 μL/min  

Rotation speed  350 rpm  

Sprayer Hight  56.3 mm  

Time for spraying 
α-CHCA : 22min 

DHB : 30min 

 

 

 

Tab. S2 Matrix deposit conditions (hand spray) 

Applied compounds were docetaxel, fluorouracil and sitagliptin. 

 

Parameters  Setting  

Gas  Nitrogen  

Nozzle size 0.2 mm 
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Tab. S3 MALDI-MS analytical conditions of the testing compounds 

 

Compound Precursor ion 
Specific 

product ion 

Laser 

Power 

Collison 

energy (%) 

Afatinib 486.17 371.07 49 65 

Dasatinib 488.16 401.10 41 70 

Docetaxel 830.34 549.20 52 47 

Erlotinib 394.17 336.14 47 65 

Fluorouracil 131.03 103.05 60 55 

Gefitinib 447.16 128.10 49 65 

Imatinib 494.26 394.16 49 54 

Nilotinib 530.19 289.10 51 50 

Olaparib 435.18 367.15 50 50 

Osimertinib 500.27 455.20 47 55 

Raltegravir 445.16 361.13 46 38 

Sitagliptin 408.13 235.08 55 47 
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Afatinib (precursor ion was m/z 486.17) 

 

 

Dasatinib (precursor ion was m/z 488.16) 

 
 

Docetaxel (precursor ion was m/z 830.34) 

 

 

Fig. S1 The spectra of product ion scan of target compounds by MALDI-MS 
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Erlotinib (precursor ion was m/z 394.17) 

 

 

Fluorouracil (precursor ion was m/z 131.03) 

 

 

Gefitinib (precursor ion was m/z 447.16) 

 

 

Fig. S1 Continued 
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Imatinib (precursor ion was m/z 494.26) 

 

 

Nilotinib (precursor ion was m/z 530.19) 

 

 

Olaparib (precursor ion was m/z 435.18),

 

 

Fig. S1 Continued 
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Osimertinib (precursor ion was m/z 500.27) 

 

 

 

Raltegravir (precursor ion was m/z 445.16) 

 

 

Sitagliptin (precursor ion was m/z 408.13) 

 

 

Fig. S1 Continued 
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Fig. S2 Correlation between intensity and polarizability 

ρ: Spearman's rank correlation coefficient. 

 

 

Fig. S3 Correlation between protein binding and Log P 

ρ: Spearman's rank correlation coefficient. 
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